Z&5
Scaling Machine Learning with

TensorFlow

Jeff Dean
Google Brain team
g.co/brain

Presenting the work of many people at Google


http://g.co/brain
http://g.co/brain

Our Mission:
Make Machines Intelligent.
Improve People’s Lives.



Google Brain Team: Research Impact

Since 2012, published > 130 papers at top venues in machine learning

Some highlights:

2012:
2013:
2014:
2015:
2016:

DistBelief, unsupervised learning to discover cats
opensource of word2vec

sequence to sequence learning, image captioning
Inception, DeepDream, TensorFlow

neural translation, medical imaging, architecture search
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Computer Systems for Machine Learning

Natural Language Understanding
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| Google Research Blog

The latest news from Research at Google

The Google Brain team — Looking Back on 2016
Thursday, January 12, 2017

Posted by Jeff Dean, Google Senior Fellow, on behalf of the entire Google Brain team

The Google Brain team's long-term goal is to create more intelligent software and systems that
improve people's lives, which we pursue through both pure and applied research in a variety of
different domains. And while this is obviously a long-term goal, we would like to take a step back
and look at some of the progress our team has made over the past year, and share what we feel
may be in store for 2017.

Research Publications

One important way in which we assess the quality of our research is through publications in top tier
international machine learning venues like ICML, NIPS, and ICLR. Last year our team had a total of
27 accepted papers at these venues, covering a wide ranging set of topics including program
synthesis, knowledge transfer from one network to another, distributed training of machine learning
models, generative models for language, unsupervised learning for robotics, automated theorem
proving, better theoretical understanding of neural networks, algorithms for improved
reinfarcement learning, and many others. We also had numerous other papers accepted at
conferences in fields such as natural language processing (ACL, CoNNL), speech (ICASSP), vision
(CVPR), robotics (ISER), and computer systems (OSDI). Our group has also submitted 34 papers to
the upcoming ICLR 2017, a top venue for cutting-edge deep learning research. You can learn more
about our work in our list of papers, here.

Natural Language Understanding

Allowing computers to better understand human language is one key area for our research. In late
2014, three Brain team researchers published a paper on Sequence to Sequence Learning with
Neural Networks, and demonstrated that the approach could be used for machine translation. In
2015, we showed that this this approach could also be used for generating captions for images,
parsing sentences, and solving computational geometry problems. In 2016, this previous research
(plus many enhancements) culminated in Brain team members worked closely with members of
the Google Translate team to wholly replace the translation algorithms powering Google Translate
with a completely end-to-end learned system (research paper). This new system closed the gap
between the old system and human quality translations by up to 85% for some language pairs. A
few weeks later, we showed how the system could do "zero-shot translation”, learning to translate
between languages for which it had never seen example sentence pairs (research paper). This
system is now deployed on the production Google Translate service for a growing number of
language pairs, giving our users higher quality translations and allowing people to communicate
more effectively across language barriers. Gideon Lewis-Kraus documented this translation effort
(along with the history of deep learning and the history of the Google Brain team) in “The Great A |
Awakening", an in-depth article that appeared in The NY Times Magazine in December, 2016.

Robotics

Traditional robotics control algorithms are carefully and painstakingly hand-programmed, and
therefore embodying robots with new capabilities is often a very laborious process. We believe that
having robots automatically learn to acquire new skills through machine learning is a better

(research paper). Our robots made about 800,000 grasping attempts during this research. Later in
the year, we explored three possible ways for robots to learn new skills, through reinforcement
learning, through their own interaction with objects, and through human demonstrations. We're
continuing to build on this work in our goals for making robots that are able to flexibly and readily
learn new tasks and operate in messy, real-world environments. To help other robotics researchers,
we have made multiple robotics datasets publicly available.

Healthcare

We are excited by the potential to use machine learning to augment the abilities of doctors and
healthcare practitioners. As just one example of the possibilities, in a paper published in the Journal
of the A Medical A (JAMA), we di d that a machine-learning driven
system for diagnosing diabetic retinopathy from a retinal image could perform on-par with board-
certified ophthalmologists. With more than 400 million people at risk for blindness if early
symptoms of diabetic retinopathy go undetected, but too few ophthalmologists to perform the
necessary screening in many countries, this technology could help ensure that more people receive
the proper screening. We are also doing work in other medical imaging domains, as well as
investigating the use of machine learning for other kinds of medical prediction tasks. We believe
that machine learning can improve the quality and efficiency of the healthcare experience for
doctors and patients, and we'll have more to say about our work in this area in 2017.

Music and Art Generation

Technology has always helped define how people create and share media — consider the printing
press, film or the electric guitar. Last year we started a project called Magenta to explore the
intersection of art and machine intelligence, and the potential of using machine learning systems to
augment human creativity. Starting with music and image generation and moving to areas like text
generation and VR, Magenta is advancing the state-of-the-art in generative models for content
creation. We've helped to organize a one-day symposium on these topics and supported an art
exhibition of machine generated art. We've explored a variety of topics in music generation and
artistic style transfer, and our jam session demo won the Best Demo Award at NIPS 2016.

Al Safety and Fairness

As we develop more powerful and sophisticated Al systems and deploy them in a wider variety of
real-world settings, we want to ensure that these systems are both safe and fair, and we also want
to build tools to help humans better understand the output they produce. In the area of Al safety, in
a cross-instituti collab with at Stanford, Berkeley, and OpenAl, we published
awhite paper on Concrete Problems in Al Safety (see the blog post here). The paper outlines some
specific problems and areas where we believe there is real and foundational research to be done in
the area of Al safety. One aspect of safety on which we are making progress is the protection of the
privacy of training data, obtaining differential privacy guarantees, most recently via knowledge
transfer techniques. In addition to safety, as we start to rely on Al systems to make more complex
and sophisticated decisions, we want to ensure that those decisions are fair. In a paper on equality
of opportunity in supervised learning (see the blog post here), we showed how to optimally adjust
any trained predictor to prevent one particular formal notion of discrimination, and the paper
illustrated this with a case study based on FICO credit scores. To make this work more accessible,
‘we also created a visualization to help illustrate and interactively explore the concepts from the
paper.

TensorFlow

In November 2015, we open-sourced an initial version of TensorFlow so that the rest of the
machine learning community could benefit from it and we could all collaborate to jointly improve it.
In 2016, TensorFlow became the most popular machine learning project on GitHub, with over
10,000 commits by more than 570 people. TensorFlow’s repository of models has grown with
contributions from the community, and there are also more than 5000 TensorFlow-related
repositories listed on GitHub alone! Furthermore, TensorFlow has been widely adopted by well-
known research groups and large companies including DeepMind, and applied towards or some
unusual applications like finding sea cows Down Under and sorting cucumbers in Japan.

We've made numerous performance improvements, added support for distributed training, brought
TensorFlow to i0S, Raspberry Pi and Windows, and integrated TensorFlow with widely-used big
data infrastructure. We've extended TensorBoard, TensorFlow’s visualization system with improved
tools for visualizing computation graphs and embeddings. We've also made TensorFlow accessible
from Go, Rust and Haskell, released state-of-the-art image classification models, Wide and Deep
and answered thousands of questions on GitHub, StackOverflow and the TensorFlow mailing list
along the way. TensorFlow Servina simplifies the process of serving TensorFlow model:

production, and for those working in the cloud, Google Cloud Machine Learning offers TensorFlow
as a managed service.

Last November, we celebrated TensorFlow's one year anniversary as an open-source project, and
presented a paper on the computer systems aspects of TensorFlow at OSDI, one of the premier
computer systems research cor In with our in the compiler team
at Google we've also been hard at work on a backend compiler for TensorFlow called XLA, an alpha
version of which was recently added to the open-source release.

Machine Learning Community Involvement

We also strive to educate and mentor people in how to do machine learning and hew te conduct
research in this field. Last January, Vincent Vanhoucke, one of the research leads in the Brain team,
developed and worked with Udacity to make available a free online deep learning course (blog
announcement). We also put together TensorFlow Playground, a fun and interactive system to help
people better understand and visualize how very simple neural networks learn to accomplish tasks.

In June we welcomed our first class of 27 Google Brain Residents, selected from more than 2200
applicants, and in seven months they have already conducted significantly original research,
helping to author 21 research papers. In August, many Brain team members took part in a Google
Brain team Reddit AMA (Ask Me Anything) on r/MachineLearning to answer the community’s
questions about machine learning and our team. Throughout the year, we also hosted 46 student
interns (mostly Ph.D. students) in our group to conduct research and work with our team members.

Spreading Machine Learning within Google

In addition to the public-facing activities outlined above, we have continued to work within Google
to spread machine learning expertise and awareness throughout our many product teams, and to
ensure that the company as a whole is well positioned to take advantage of any new machine
learning research that emerges. As one example, we worked closely with our platforms team to
provide specifications and high level goals for Google’s Tensor Processing Unit (TPU), a custom
machine learning accelerator ASIC that was discussed at Google 1/0. This custom chip provides an
order of magnitude improvement for machine learning workloads, and is heavily used throughout
our products, including for RankBrain, for the recently launched Neural Machine Translation system,
and for the AlphaGo match against Lee Sedol in Korea last March.

Allin all, 2016 was an exciting year for the Google Brain team and our many collaborators and
colleagues both within and outside of Google, and we look forward to our machine learning
research having significant impact in 2017!

research.googleblog.com/2017/01
/the-google-brain-team-looking-ba

ck-on.html
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Growing Use of Deep Learning at Google

# of directories containing model description files Across many
4000 products/areas:
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Experiment Turnaround Time and Research Productivity

Minutes, Hours:

o Interactive research! Instant gratification!
1-4 days

o Tolerable

o Interactivity replaced by running many experiments in parallel
1-4 weeks

o High value experiments only
o Progress stalls

>1 month

o Don't eventry




Build the right tools



fTensorFIow

http.//tensorflow.org/

and

https://github.com/tensorflow/tensorflow

Open, standard software for
general machine learning

Great for Deep Learning in

particular
First released Nov 2015

Apache 2.0 license
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Computation is a dataflow graph

biases Graph of Nodes, also called Operations or ops.

examples

labels
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Example TensorFlow fragment

e Build a graph computing a neural net inference.

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input _data.read _data_sets('MNIST data', one hot=True)

X

W
b
y

tf.placeholder("float", shape=[None, 784])
tf.Variable(tf.zeros([784,10]))
tf.Variable(tf.zeros([10]))
tf.nn.softmax(tf.matmul(x, W) + b)
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Computation is a dataflow graph
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Assign Devices to Ops

e TensorFlow inserts Send/Recv Ops to transport tensors across devices
e Recv ops pull data from Send ops

GPU 0 CPU

biases

o

learning rate




Assign Devices to Ops

e TensorFlow inserts Send/Recv Ops to transport tensors across devices
e Recv ops pull data from Send ops

ﬁ GPUO CPU
biases
b OO
Csend D~

, CReov >
learning rate -7




Same mechanism supports large distributed systems

Computation
spread across
hundreds of
machines and
thousands of GPU
cards
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replicas
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TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems

(Preliminary White Paper, November 9, 2015)

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg 5. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Tan Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqging Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng
Google Research®

http://tensorflow.org/whitepaper2015.pdf

TensorFlow: A system for large-scale machine learning

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaogiang Zheng

Google Brain

Paper in OSDI 2016
https://arxiv.org/abs/1605.08695



https://arxiv.org/abs/1605.08695
https://arxiv.org/abs/1605.08695
http://tensorflow.org/whitepaper2015.pdf
http://tensorflow.org/whitepaper2015.pdf

TensorFlow ™

An open-source software library

for Machine Intelligence

GET STARTED

&

TensorFlow 1.0 has arrived! Dynamic graphs in TensorFlow
We're excited to announce the release of We've open-sourced TensorFlow Fold to make it
TensorFlow 1.0! Check out the migration guide to easier than ever to work with input data with
upgrade your code with ease. varying shapes and sizes.

UPGRADE NOW LEARN MORE

http://tensorflow.org/

Q, Search

~

The 2017 TensorFlow Dev Summit

Thousands of people from the TensorFlow
community participated in the first flagship event.
Watch the keynote and talks.

WATCH VIDEOS
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Why Did We Build TensorFlow?

Wanted system that was flexible, scalable, and production-ready
DistBelief, our first system, was good on two of these, but lacked flexibility

Most existing open-source packages were also good on 2 of 3 but not all 3



TensorFlow Goals

Establish common platform for expressing machine learning ideas and systems
Make this platform the best in the world for both research and production use

Open source it so that it becomes a platform for everyone, not just Google



Github Stars

@ MicrosoftfCNTK - @ torchitorch? @ Theano/Theano @ scikit-learndscikit-.. @ dmic/mxnet @ ensorflow/tensorflo. .

@ BVLC/caffe
51847

50000 + TensorFlow —

45000
40000
35000
30000
25000
20000
15000
10000

5000

330

03/20/2017

B Microsoft/ CNTK 9960
[ torchitorch? 6540
B Theano/Theano 5910
B scikit-learn/scikit-learn 17340
B dmlc/mxnet 8880
B tensorflow/tensorflow 51847
[ BVLC/caffe 16680

05/06/2013 09/23/2013 051372014 12/30/2014 081972015 04/06/2016 03/2372017
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ML is done in many places

Map Satellite

Map data ©2017 | Terms of Use | Report a map eror

-TensorFIow GitHub stars by GitHub user profiles w/ public locations
Source: http://jrvis.com/red-dwarf/?user=tensorflow&repo=tensorflow




Progress

v 5

Initial
Release

Nov ‘15

Dec ‘15

v0.7

TensorFlow
Serving

v0.9
i0S; Mac GPU

v0.11

HDFS; CUDA 8,
CuDNN 5

Oct ‘16

Feb16  Apr‘16 Jun‘16  Aug‘l16
i) | ]
v0.6 v0.8 v0.10
Faster on GPUs; Distributed Slim
Python 3.3+ TensorFlow

|

v0.12
Windows 7,10,

and Server 2016;

TensorBoard
Embedding
Visualizer

https://github.com/tensorflow/tensorflow/releases

f


https://github.com/tensorflow/tensorflow/releases
https://github.com/tensorflow/tensorflow/releases

Progress

v 5

Initial
Release

Nov ‘15

Dec ‘15

v0.7

TensorFlow
Serving

Feb ‘16

Apr‘16

Jun ‘16

v0.9
i0S; Mac GPU

Aug ‘16

v0.11

HDFS; CUDA 8,
CuDNN 5

Oct ‘16

v0.6

Faster on GPUs;
Python 3.3+

v0.8

Distributed
TensorFlow

v0.10
Slim

|

v0.12

Windows 7, 10,
and Server 201
TensorBoard
Embedding
Visualizer

https://github.com/tensorflow/tensorflow/releases

vi0
released
in Feb.
2017
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e Rapid development, many outside contributors
o 475+ non-Google contributors to TensorFlow 1.0
o 15,000+ commits in 15 months
o Many community created tutorials, models, translations, and projects
m ~7,000 GitHub repositories with ‘TensorFlow’ in the title

e Direct engagement between community and TensorFlow team
o 5000+ Stack Overflow questions answered

o 80+ community-submitted GitHub issues responded to weekly

e Growing use in ML classes: Toronto, Berkeley, Stanford, ...



tensorflow.org/tutorials

TensorFlow ™

Guides

TUTORIALS HOW TO

Tutorials

Basic Neural Networks
MNIST For ML Beginners
Deep MNIST for Experts
TensorFlow Mechanics 101

Easy ML with tf.contrib.learn
tf contrib_learn Quickstart

Large-scale Linear Models with
TensorFlow

TensorFlow Linear Model Tutorial

TensorFlow Wide & Deep Learning
Tutorial

Logging and Monitoring Basics with tf.
contrib.learn

Building Input Functions with tf contrib.

learn

Creating Estimators in tf.contrib.learn

TensorFlow Serving

TensorFlow Serving

Image Processing
Convolutional Neural Networks

Image Recognition

Language and Sequence Processing
Vector Representations of Words
Recurrent Neural Networks
Sequence-to-Sequence Models
SyntaxNet

Non-ML Applications
Mandelbrot Set
Partial Differential Equations,

TensorFlow Versions

Guides API10.12

Tutorials

Basic Neural Networks

The first few Tensorflow tutorials guide you through training and testing a simple neural network to classify handwritten
digits from the MNIST database of digit images.
MNIST For ML Beginners

f you're new to machine learning, we recommend starting here. You'll learn about a classic problem, handwritten digit
[classification (MNIST), and get a gentle introduction to multiclass classification.

View Tutorial

Deep MNIST for Experts

If you're already familiar with other deep learning software packages, and are already familiar with MNIST, this tutorial
will give you a very brief primer on TensorFlow.

View Tutorial

TensorFlow Mechanics 101

This is a technical tutorial, where we walk you through the details of using TensorFlow infrastructure to train models at
scale. We use MNIST as the example.

View Tutorial

Easy ML with tf.contrib.learn

tf.contrib.learn Quickstart

A quick introduction to tf.contrib.learn, a high-level API for TensorFlow. Build, train, and evaluate a neural network with
just a few lines of code.

View Tutorial

Contents

Basic Neural Networks
MNIST For ML
Beginners
Deep MNIST for
Experts
TensorFlow
Mechanics 101

Easy ML with tf.contrib.
learn
f.contrib learn
Quickstart

Overview of Linear
Models with tf.contrib. =
learn

Linear Model Tutorial

Wide and Deep
Learning Tutorial

Logging and
Meonitoring Basics with
tf.contrib leam

Building Input
Functions with tf.
contrib.learn

Creating Estimators in
tf.contrib leam

TensorFlow Serving
TensorFlow Serving
Image Processing

Convolutional Neural

Networks

Image Recognition

Deep Dream Visual

Hallucinations
Language and Sequence
Processing

Vector

Representations of

Words

Recurrent Neural
Networks

Sequence-to-
Sequence Models

SyntaxNet: Neural
Models of Syntax

Non-ML Applications
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Research

lterate quickly
Train models faster
Run more experiments in parallel

Production

!t‘

Server farms and embedded
CPUs, GPUs, TPUs, and more
Low-latency serving
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speedup ()

TensorFlow v1.0 Performance
Inception-v3 Training - Ideal Scaling Synthetic Data

DGX-1: K80:

Inception-v3 training on P100 GPUs

Inception-v3 training on K80 GPUs

2

2 4
- |deal scaling

- ldeal scaling



speedup ()

TensorFlow v1.0 Performance
Inception-v3 Training - Synthetic Data

DGX-1: 7.37x speedup at 8 GPUs K80: 7.5x speedup at 8 GPUs

Inception-v3 training on P100 GPUs

Inception-v3 training on K80 GPUs

4
= |deal scaling = TF 1.0 (synthetic)

= |deal scaling = TF 1.0 (synthetic)



speedup ()

TensorFlow v1.0 Performance
Inception-v3 Training - Real Data

DGX-1: 7.2x speedup at 8 GPUs K80: 7.3x speedup at 8 GPUs

Inception-v3 training on P100 GPUs

Inception-v3 training on K80 GPUs

4 5]
- |deal scaling = TF 1.0 (synthetic) = TF 1.0 (real data)

- |deal scaling = TF 1.0 (synthetic) = TF 1.0 (real data)



TensorFlow v1.0 Performance
Inception-v3 Distributed Training - Synthetic Data

58x speedup at 64 GPUs (8 Servers / 8 GPUs each)

- GPU: K80 Inception-v3 training on K80 GPUs
- Network: 20 Gb/sec

speadup ()

0 10 20 30 40 =0 60

m |deal scale = TF 1.0 (synthetic) f



Just-In-Time Compilation

via XLA, "Accelerated Linear Algebra” compiler

TF graphs go in,

[0 )

0x00000000
0x00000003
0Xx000060007
0x0000000b

Optimized & specialized
assembly comes out.

movq (%rdx), %rax
vmovaps (%rax), %xmmo
vmulps %xmm@, %xmm@, %xmmo
vmovaps %xmm@, (%rdi)

Let's explain that!






http://www.youtube.com/watch?v=ZYlVnH08DJc

Computers can now see

Large implications for healthcare



MEDICAL IMAGING

Using similar model for detecting diabetic
retinopathy in retinal images




JAMA 3o
American Medical Association

December 13, 2016
Development and Validation of a Deep Learning Al-

gorithm for Detection of Diabetic Retinopathy in
Retinal Fundus Photographs

Varun Gulshan, PhD’; Lily Peng, MD, PhD'; Marc Coram, PhD; et al

¥ Author Affiliations

JAMA. 2016;316(22):2402-2410. doi:10.1001/jama.2016.17216




J AMA The Joumnal of the
American Medical Association

December 13, 2016

Development and Validation of a Deep Learning Al-
gorithm for Detection of Diabetic Retinopathy in
Retinal Fundus Photographs

Varun Gulshan, PhD’; Lily Peng, MD, PhD'; Marc Coram, PhD; et al

¥ Author Affiliations
JAMA. 2016;316(22):2402-2410. doi:10.1001/jama.2016.17216

Performance on par or slightly better than the median of 8 U.S.

board-certified ophthalmologists (F-score of 0.95 vs. 0.91).
http://research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html
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Detecting Cancer Metastases on
(Gigapixel Pathology Images

Yun Liu'*, Krishna Gadepalli', Mohammad Norouzi!, George E. Dahl!,
Timo Kohlberger!, Aleksey Bovko!, Subhashini Venugopalan®**,
Aleksei Timofeev?, Philip (). Nelson?, Greg S. Corrado', Jason D. Hipp?,
Lily Peng', and Martin C. Stumpe’

{liuyun,mnorouzi,gdahl,lhpeng,mstumpe }@google.com

L Google Brain, 2Google Tne, *Verily Life Sciences,
Mountain View, CA, USA

Blog: https://research.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
Paper: https://arxiv.org/abs/1703.02442
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ML Challenges in Pathology

)4
A Extremely large images (> 100k x 100k pixels)
A Multiscale problem - need detail as well as context
10x
20x
40x

150k pixels (15 Gigapixel image)



Prediction on center

Multiscale model 128x128 patch at 40X

"

- -

Ensemble
average

Multi scale model

detail «—— context

resembles microscope — : —( | Independent
magnifications ; InceptionV3 towers

pre-trained on
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tuhdniigy
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Detecting breast cancer metastases in lymph nodes

biopsy image ground truth model prediction model prediction
(from pathologist) (early results) (current results)

non-tumor
regions

~*tumor not annotated in
ground truth

reduced noise in -
normal regions
(everywhere else)

tumor (in ground truth)

=

Tumor probability

o



Model performance compared to pathologist

our model pathologist*
Tumor localization score (FROC) 0.89 0.73
Sensitivity at 8 FP 0.92 0.73
Slide classification (AUC) 0.97 0.96

* pathologist given infinite time per image (reaching 0 FPs)

Evaluated using Camelyon16 dataset (just 270 training examples!)



Scaling language understanding models



Sequence-to-Sequence Model

Target sequence

[Sutskever & Vinyals & Le NIPS 2014] X v 7

/

Deep LSTM
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Sequence-to-Sequence Model: Machine Translation

Target sentence

[Sutskever & Vinyals & Le NIPS 2014]

How
A A A A
—- - —» v —> —- - —-
Quelle est votre taille? <EOS>

Input sentence



Sequence-to-Sequence Model: Machine Translation

Target sentence

[Sutskever & Vinyals & Le NIPS 2014]

How tall
A A A A
—- - —» v —> —- - —-
Quelle est votre taille? <EOS> How

Input sentence



Sequence-to-Sequence Model: Machine Translation

Target sentence

[Sutskever & Vinyals & Le NIPS 2014]

How tall are
A A A A
—- - —» v —> —- - —-
Quelle est votre taille? <EOS> How tall

Input sentence



Sequence-to-Sequence Model: Machine Translation

Target sentence

[Sutskever & Vinyals & Le NIPS 2014]

How tall are you?
A A A A

I o —> v —> I = I
Quelle est votre taille? <EQOS> How tall are

Input sentence



Sequence-to-Sequence Model: Machine Translation

At inference time:
Beam search to choose most probable

A A A A
— — —» v —> — — —
Quelle est votre taille? <EQOS>

Input sentence



Sequence to Sequence model
applied to Google Translate



Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui,schuster,zhifengec,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

https://arxiv.org/abs/1609.08144
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Google Neural Machine Translation Model

One
model
replica:
one
machine
w/ 8
GPUs

-

s (0 -0

8 Layers A

+
= (- U
- [ (.

o (-
X3 X2

Encoder LSTMs

+

</s>

Y1 Y2 </s> \

SoftMax

Decoder LSTMs

mE .-

+ + +

+ =l 8-

x

Attention - - - Gpu2

<s> Y1 Y3 /




Model + Data Parallelism

Parameters
distributed across
many parameter
server machines
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Neural Machine Translation

B et perfect translation

neural (GNMT)
phrase-based (PBMT)

1SN

N

Closes gap between old system
and human-quality translation
by 58% to 87%

Translation quality
w

—

o

English English English Spanish French Chinese

> > > > > > ° °
Spanish French Chinese English English  English Enables better communication
across the world

Translation model

research.googleblog.com/2016/09/a-neural-network-for-machine.html
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Training

7 il .
English Google Neural | English
Machine Translation
| Japanese . Japanese
Korean Korean

Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation,

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and Jeffrey Dean
https://arxiv.org/abs/1611.04558

https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html
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Bigger models, but sparsely activated



Bigger models, but sparsely activated

Motivation:
Want huge model capacity for large datasets, but
want individual example to only activate tiny fraction
of large model



Per-Example Routing
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Per-Example Routing
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Table 7: Perplexity and BLEU comparison of our method again -art methods on

the Google Production En— Fr dataset.

Model Eval Ewval Test Test Computation Total Training
Perplexaty | BLEU Perpiﬂx( BLEU per Word #Parameters Time

MoE with 2048 Experts 2.60 31.27 2.69\ 36.57 100.8M 8.690B 1 day/64 k40s

GNMT (Wu et al., 2016) 2.78 35.80 2.87 '\ 35.56 214.2M 246.9M 6 days/96 kBOs

S~

Outrageously Large Neural Networks: The Sparsely-gated Mixture-of-Experts Layer,
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le & Jeff Dean
To appear in ICLR 2017, https://openreview.net/pdf?id=B1ckMDqalg
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Automated machine learning (“learning to learn”)



Current:
Solution = ML expertise + data + computation



Current:
Solution = ML expertise + data + computation

Can we turn this into:
Solution = data + 100X computation

27?77



Early encouraging signs

Trying multiple different approaches:

(1) RL-based architecture search
(2) Model architecture evolution



NEURAL ARCHITECTURE SEARCH WITH
REINFORCEMENT LEARNING

Barret Zoph, Quoc V. Le TO appear In ICLR 201 7

Google Brain
{barretzoph, gvl}@google.com

Idea: model-generating model trained via RL

(1) Generate ten models

(2) Train them for a few hours

(3) Use loss of the generated models as reinforcement
learning signal

arxiv.org/abs/1611.01578



CIFAR-10 Image Recognition Task

Model | Depth Parameters | Error rate (%)

Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 7.97
Highway Network (Srivastava et al., 2015) - - 7.72
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 3B.eM 522
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016b)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016b) 110 1.7M 5.23
1202 10.2M 4.91
Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 4.17
ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62
DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4 1(]

DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
image Neural Architecture Search v2 predicting strides 20 2.5M 6.01

. 7 7 7 Neural Architecture Search v3 max pooling 39 T1M 4 4
have stidesof pooling ayers. FH i e height, FW 3 ltr widh and N fs prbes of Aers, Neural Architecture Search v3 max pooling + more filters | 39 32.0M

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.



Penn Tree Bank Language Modeling Task
“‘Normal” LSTM cell

Model | Parameters Test Perplexity

Mikolov & Zweig (2012) - KN-3 2M* 141.2
Mikolov & Zweig (2012) - KNS + cache 2M* 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA ™* 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache OM* 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net sM* 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) HAEM 8.4
Gal (2015) - Variational LSTM (medium, untied) 20M 9.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M T8.6
Gal (2015) - Variational LSTM (large, untied) HAM 0.2
H Gal (2015) - Variational LSTM (large, untied, MC) HAM 73.4
Ce” dlscovered by Kim et al. (2015} - CharCNN 19M 78.9
T Press & Wolf (2016) - Variational LSTM, shared embeddings 24M 74.2
arCh IteCtu re SearCh Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
' 3 Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21IM 70.9

Zilly et al. (2016) - Variational RHN, shared embeddings 24M [66.0]
Neural Architecture Search with base 8 32ZM 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64,0

Neural Architecture Search with base 8 and shared embeddings 54M I 62.4 I

Table 2: Single model perplexity on the test set of the Penn Treebank language modeling task.
Parameter numbers with + are estimates with reference to Merity et al. (2016).




Large-Scale Evolution of Image Classifiers

Esteban Real! Sherry Moore' Andrew Selle! Saurabh Saxena'
Yutaka Leon Suematsu? Quoc Le' Alex Kurakin'

Idea: evolve models via evolutionary algorithm

https://arxiv.org/abs/1703.01041
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Large-Scale Evolution of Image Classifiers

DNA

Esteban Real! Sherry Moore' Andrew Selle! Saurabh Saxena'
Yutaka Leon Suematsu? Quoc Le' Alex Kurakin'
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Evolutionary Step
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Insert nonlinearity
Remove nonlinearity
Add-skip

Remove skip



Evolutionary Step
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Evolve From Scratch

Initialize with linear models
Repeat evolutionary step
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STUDY PARAMS. Cl10+ C100+ WITHIN?
MAXoUT (GOODFELLOW ET AL., 2013) - 90.7% 61.4% No
NETWORK IN NETWORK (LIN ET AL.. 2013) = 91.2% - No
ALL-CNN (SPRINGENBERG ET AL., 2014) 1.3 M 92.8% 66.3% YES
DEEPLY SUPERVISED (LEE ET AL., 2015) - 92.0% 65.4% No
HIGHWAY (SRIVASTAVA ET AL., 2015) 23M 92.3% 67.6% No
RESNET (HE ET AL.. 2016) 1.7M 93.4% 72.8%* YES
54M 94.6%
EVOLUTION (OURS N/A
(OURS) 404 M 76.0% ’

WIDE RESNET 28-10 (ZAGORUYKO & KOMODAKIS, 2016) 36.5M 96.0% 80.0% YES
WIDE RESNET 40-10+D/0 (ZAGORUYKO & KOMODAKIS, 2016) 50.7M 96.2% 81.7% No
DENSENET (HUANG ET AL., 2016A) 256 M 96.7% 82.8% No

STUDY /STARTING POINT\ CONSTRAINTS POST-PROCESSING PARAMS. Cl10+ C100+

BAYESIAN 3 LAYERS IXED ARCHITECTURE, NO NONE - 90.5% —

(SNOEK KIPS

ET AL., 20/12)

Q-LEARNING - DISCRETE PARAMS., MAX. TUNE, RETRAIN 11.2M  93.1% 72.9%

(BAKER NUM. LAYERS, NO SKIPS

ET AL., 2016)

RL (Zopr 20 LAYERS, 50% DISCRETE PARAMS., SMALL GRID 25M  94.0% -

LE, 2016 SKIPS EKACTLY 20 LAYERS SEARCH, RETRAIN

RL (ZOPH\& 39 LAYERS, 2 POOL ISCRETE PARAMS., ADD MORE FILTERS, 32.0M  96.2% —

LE, 2016) LAYERS AT 13 AND XACTLY 39 LAYERS, 2 SMALL GRID

26, 50% SKIPS POOQLEAYERSAT]3 AND 26 EARCHRETRAIN
EVOLUTION LINEAR MODEL, POWER-OF-2 STRIDES 54M 94.6%
404 M 76.0%

(OURS) ZERO CONVS.




Where are we trying to go”?



Where are we trying to go”?
Combine Several of These Ideas:
Large model, but sparsely activated

Single model to solve many tasks (100s to 1Ms)
Dynamically learn and grow pathways through large model



Outputs

Single large
model,
sparsely
activated
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More computational power needed

Deep learning is transforming how we design computers



Special computation properties

educed about 1.2 1.210
precision xabout0.6 NOT X 127
ok

about 0.7 0. /598933



Special computation properties

educed about 1.2 1.210
precision xabout0.6 NOT X 127
ok
about 0.7 0./398933
handful of N
specific —

operations




Tensor Processing Unit

Custom Google-designed chip for ‘

neural net computations

iy ?

In production use for >24 months: used on every
search query, for neural machine translation,
for AlphaGo match, ...

Talk at Computer History Museum on April 5th:
sites.gooqle.com/view/naereqgionalsymposium
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Machine Learning for
Higher Performance Machine Learning Models



For large models, model parallelism is important



For large models, model parallelism is important

But getting good performance given multiple
computing devices is non-trivial and non-obvious
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Reinforcement Learning for
Higher Performance Machine Learning Models

Placement »| Environment » Runtime

L Update

Placement |




Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model S— i
(trained via RL) gets Environment

graph as input + set
of devices, outputs

device placement for
each graph node

Update
Placement |




Reinforcement Learning for
Higher Performance Machine Learning Models

Measured time
per step gives
RL reward signal

Placement model - , . ——
(trained via RL) gets acemenl ————— [N Evkonment s —————>

graph as input + set
of devices, outputs
device placement for
each graph node

Update L
Placement |




Early results, but it seems to work

Per-step running times (secs)

Model Hardware Baseline | RL Speedup

Neural MT (2 layers) + |4 Tesla K80 | 3.20s 2.47s [22.8%

attention

Inception 4 Tesla K80 [ 4.60s 3.85s |16.3%
Baselines:

NMT: human expert placement shown on earlier slide
Inception: default placement on GPU/O



Early results, but it seems to work

Per-step running times (secs)

Model Hardware Baseline | RL Speedup
Neural MT (2 layers) + |4 Tesla K80 | 3.20s 2.47s [22.8%
attention
Inception 4 Tesla K80 [ 4.60s 3.85s |16.3%
NMT training curve 1CPU, 4GPUs
Baselines: —+ ours
55| one layer per device | |

NMT: human expert placement shown on earlier slide
Inception: default placement on GPU/O
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Figure 4: Placement of the NMT graph. Due to space limit, we show only the last 12 steps of the encoder and the first
12 steps of the decoder. Devices are denoted by colors, where gray represents the CPU and each other colors represents a
different GPU.
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Future

A more
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Example queries of the future

Which of these eye
images shows
symptoms of diabetic
retinopathy?

Please fetch me a cup
of tea from the kitchen

Describe this video
in Spanish

Find me documents related to
reinforcement learning for
robotics and summarize them
in German



Conclusions

Deep neural networks are making significant strides in
speech, vision, language, search, robotics, healthcare, ...

If you're not considering how to use deep neural nets to solve
your problems, you almost certainly should be




g.co/brain

More info about our work

Main Research Areas

Machine Learning Algorithms and Techniques Healthcare

Computer Systems for Machine Learning Robotics

Natural Language Understanding Music and Art Generation
Perception

MORE PAPERS BLOG POSTS
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Full Time Roles

We're looking for talented
research scientists and
software engineers enthusiastic
about deep learning to join us.

VIEW JOBS

g.co/brain

Join the Team

Brain Residency

This 12-month program is
designed to jumpstart your
career in deep learning, working
with our scientists and
engineers from the Google Brain
Team.

VIEW RESIDENCY

Visiting Faculty

Visiting Faculty work closely
with our scientists and
engineers, and have the
opportunity to explore projects
at industrial scale with state-of-
the-art technology.

WVIEW VISITING FACULTY

Thanks!

Interns

Our interns work on projects
utilizing the latest techniques in
deep learning. In your
application, indicate your
research interests in the 'Cover
letter/other notes’ section, so it
can be routed to the appropriate
recruiter.

VIEW INTERNSHIPS
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