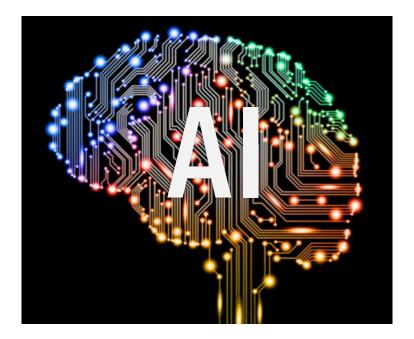
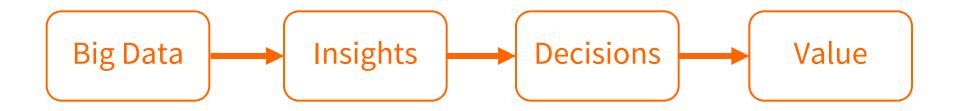
RL Systems @ RISELab Ion Stoica UC Berkeley and Databricks March 24, 2018

The two major trends of the past decade



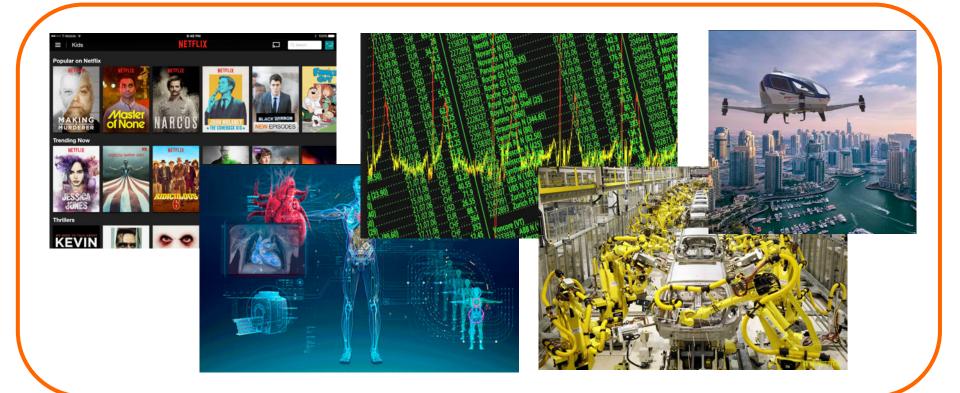
Harnessing data "revolution"

Harnessing data "revolution"



"Data is only as valuable as the decisions it enables"

Complex decisions powered by AI



Challenge

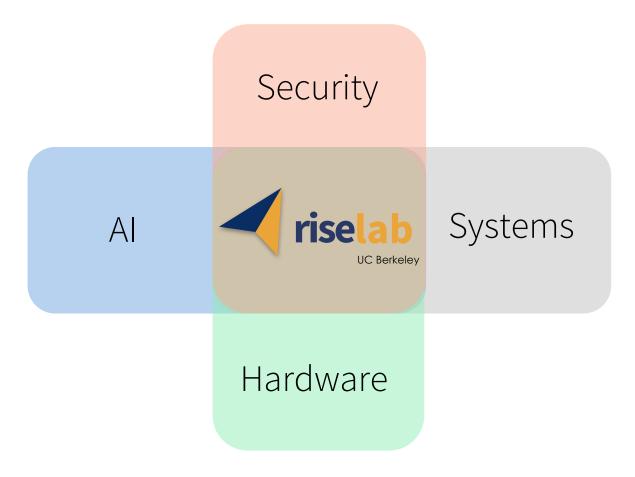
mission-critical apps in adversarial, continually changing environments

RISELab Goal

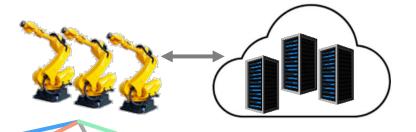
Develop open source platforms, tools, and algorithms for real-time intelligent decisions on live-data which are secure and explainable

RISELab Goal

Develop open source platforms, tools, and algorithms for real-time intelligent decisions on live-data which are secure and explainable



Example: Robotics



AI

• Reinforcement learning (RL)

Control
 hierarchies

Security

- Shared learning
- Adversarial learning

Systems

- Systems for RL
- Cloud-edge
 systems

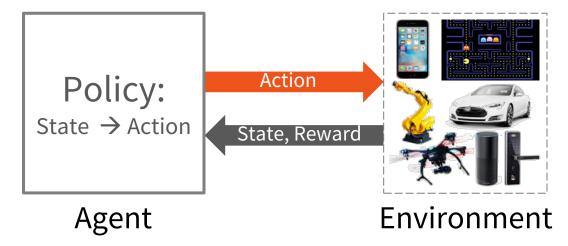
Hardware

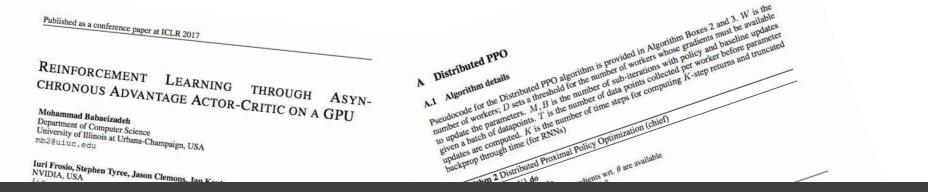
- Al accelerators
- Hardware enclaves

Reinforcement Learning (RL)

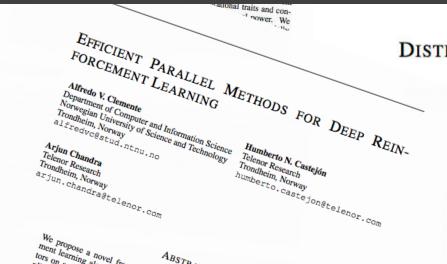
Agent continually learning by interacting with environment

Compute **policy** (i.e., **state** → **action**) to maximize **reward**





RL significant benefit from scale



17

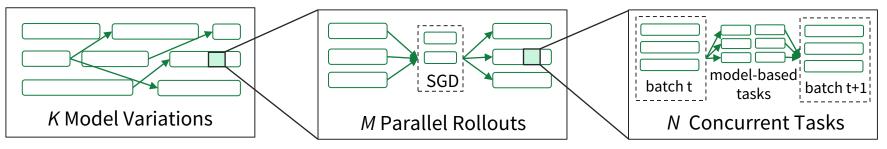
DISTRIBUTED PRIORITIZED EXPERIENCE REPLAY

ABSTRACT

ropose a distributed architecture for deep reinforcement learning at scale, enables agents to learn effectively from orders of magnitude more data than viously possible. The algorithm decouples acting from learning: the actors eract with their own instances of the environment by selecting actions according / a shared neural network, and accumulate the resulting experience in a shared

RL systems requirements

Nested parallelism



Heterogeneity

- Different task durations
- Different resource requirements (e.g., GPUs, TPUs, CPUs)

Real-time decisions

Ray: A system for distributed AI

Architecture

def read_array(file):

read ndarray "a" from "file"
return a

```
def add(a, b):
    return np.add(a, b)
```

```
a = read_array(file1)
b = read_array(file2)
sum = add(a, b)
```

@ray.remote

def read_array(file):

read ndarray "a" from "file"
return a

```
@ray.remote
def add(a, b):
    return np.add(a, b)
```

a = read_array(file1)
b = read_array(file2)
sum = add(a, b)

@ray.remote

def read_array(file):

read ndarray "a" from "file"
return a

```
@ray.remote
def add(a, b):
    return np.add(a, b)
```

- id1 = read_array.remote(file1)
- id2 = read_array.remote(file2)
- id = add.remote(id1, id2)
- sum = ray.get(id)

- Blue variables are Object IDs
- Similar to futures

@ray.remote

def read_array(file):

read ndarray "a" from "file"
return a


```
@ray.remote
def add(a, b):
    return np.add(a, b)
```

- id1 = read_array.remote(file1)
- id2 = read_array.remote(file2)
- id = add.remote(id1, id2)
- sum = ray.get(id)

@ray.remote

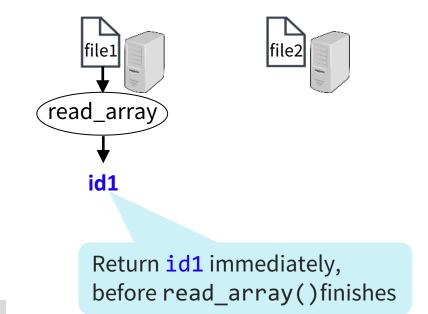
def read_array(file):

read ndarray "a" from "file"
return a

```
@ray.remote
def add(a, b):
    return np.add(a, b)
```

id1 = read_array.remote(file1)

- id2 = read_array.remote(file2)
- id = add.remote(id1, id2)



@ray.remote

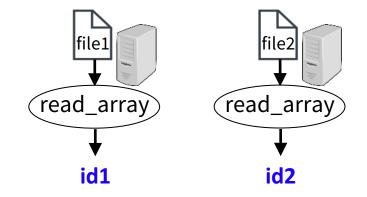
def read_array(file):

read ndarray "a" from "file"
return a

@ray.remote def add(a, b): return np.add(a, b)

id1 = read_array.remote(file1)
id2 = nead_array.nemote(file2)

- id2 = read_array.remote(file2)
- id = add.remote(id1, id2)
- sum = ray.get(id)



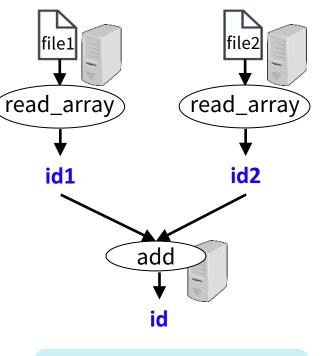
Dynamic task graph: build at runtime

@ray.remote def read_array(file): # read ndarray "a" from "file"

return a

```
@ray.remote
def add(a, b):
    return np.add(a, b)
```

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

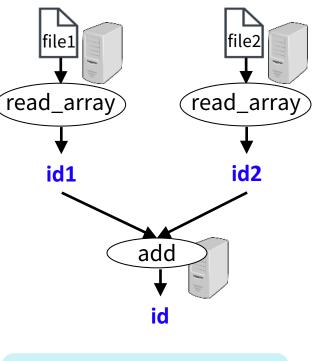


Every task scheduled, but not finished yet

@ray.remote def read_array(file): # read ndarray "a" from "file" return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)



ray.get() block until
result available

Tasks, not enough!

Might not have access to simulator state, can't do

state = simulator.initialize()
action = policy.compute(state)

Some state expensive to create (e.g., DNN on GPUs)

• Better to create it once and then reinitialize for each task

Actors

```
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
```

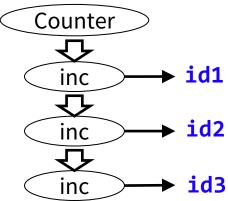
```
c = Counter()
c.inc()
c.inc()
c.inc()
```

Actors

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
id1 = c.inc.remote()
id2 = c.inc.remote()
id3 = c.inc.remote()
ray.get([id1, id2, id3]) # This returns [1, 2, 3]

- State shared across actor's methods
- Actor methods return **object IDs**

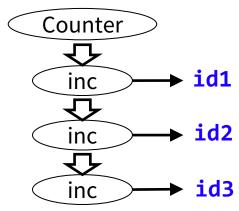


Actors

```
@ray.remote(num_gpus = 4)
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
```

c = Counter.remote()
id1 = c.inc.remote()
id2 = c.inc.remote()
id3 = c.inc.remote()
ray.get([id1, id2, id3]) # This returns [1, 2, 3]

- State shared across actor's methods
- Actor methods return object IDs
- Can specify # of GPUs



Example

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Tim Salimans¹ Jonathan Ho¹ Xi Chen¹ Ilya Sutskever¹

Abstract

We explore the use of Evolution Strategies, a class of black box optimization algorithms, as an alternative to popular RL techniques such as Q-learning and Policy Gradients. Experiments on MuJoCo and Atari show that ES is a viable solution strategy that scales extremely well with the number of CPUs available: By using hundreds to thousands of parallel workers, ES can solve 3D humanoid walking in 10 minutes and obtain competitive results on most Atari games after one hour of training time. In addition, we highlight several advantages of ES as a black box In this paper, we investigate the effectiveness of evolution strategies in the context of controlling robots in the Mu-JoCo physics simulator (Todorov et al., 2012) and playing Atari games with pixel inputs (Mnih et al., 2015). Our key findings are as follows:

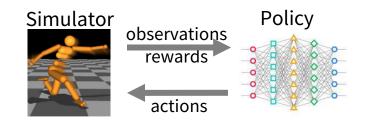
- We found specific network parameterizations that cause evolution strategies to reliably succeed, which we elaborate on in section 2.2.
- We found the evolution strategies method to be highly parallelizable: we observe linear speedups in run time even when using over a thousand workers. In particrule when using 1440 over a thousand workers.

Try lots of different policies and see which work best!

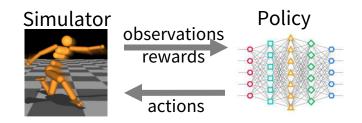
1. Introduction

Developing agents that can accomplish challenging tasks

ring between 3x and 10x as much data. The slight decrease in data efficiency is partly offset by a reduction

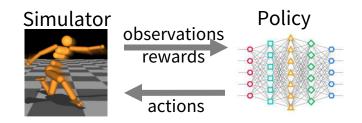


class Worker(object):
 def do_simulation(policy, seed):



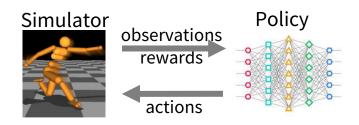
class Worker(object):
 def do_simulation(policy, seed):
 # perform simulation and return reward

```
workers = [Worker() for i in range(20)]
policy = initial_policy()
```



```
class Worker(object):
    def do_simulation(policy, seed):
        # perform simulation and return reward
```

```
workers = [Worker() for i in range(20)]
policy = initial_policy()
```

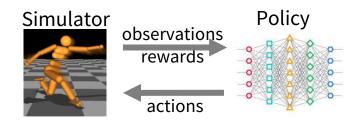


```
@ray.remote
```

```
class Worker(object):
```

def do_simulation(policy, seed):

```
workers = [Worker() for i in range(20)]
policy = initial_policy()
```

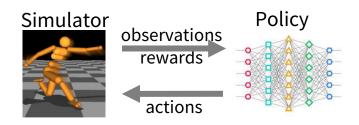


```
@ray.remote
```

```
class Worker(object):
```

```
def do_simulation(policy, seed):
```

```
workers = [Worker.remote() for i in range(20)]
policy = initial_policy()
```

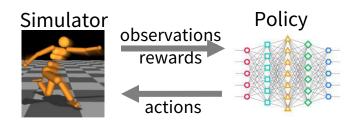


```
@ray.remote
```

```
class Worker(object):
```

```
def do_simulation(policy, seed):
```

```
workers = [Worker.remote() for i in range(20)]
policy = initial_policy()
```



@ray.remote

```
class Worker(object):
```

def do_simulation(policy, seed):

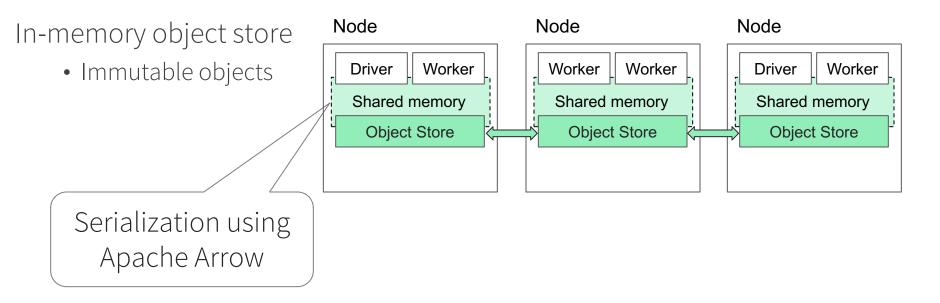
```
workers = [Worker.remote() for i in range(20)]
policy = initial_policy()
```

```
for i in range(200):
```

```
seeds = generate_seeds(i)
```

```
policy = compute_update(policy, ray.get(rewards), seeds)
```

Ray Architecture

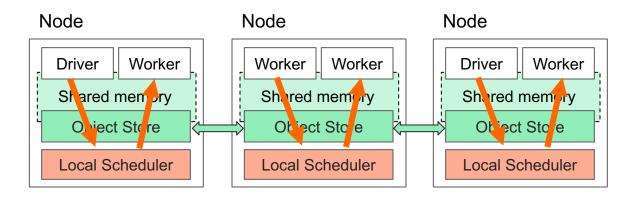


Ray Architecture

In-memory object store

• Immutable objects

Distributed scheduler

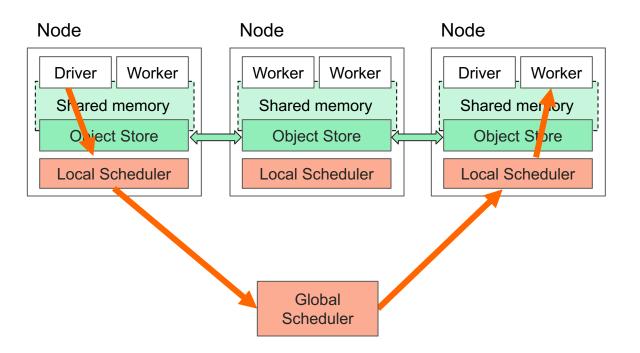


Ray Architecture

In-memory object store

• Immutable objects

Distributed scheduler



Ray Architecture

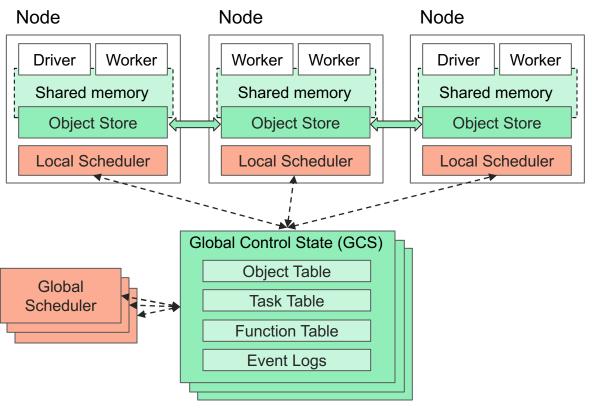
In-memory object store

• Immutable objects

Distributed scheduler

Centralized control store

• Stateless components



Ray Architecture

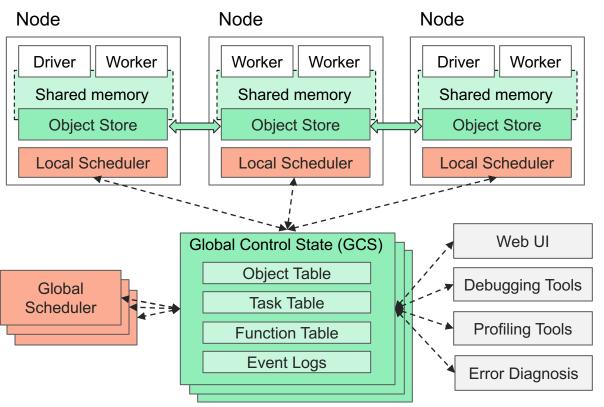
In-memory object store

• Immutable objects

Distributed scheduler

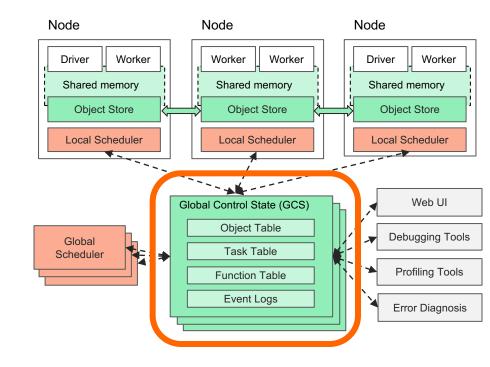
Centralized control store

• Stateless components



Highly Scalable

GCS: sharded database

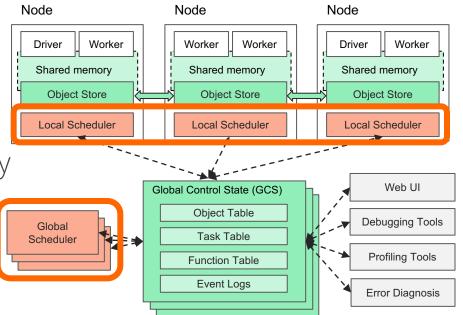


Highly Scalable

GCS: sharded database

Distributed scheduler

- Most tasks are scheduled locally
- Global scheduler plays role of load balancer



Highly Scalable

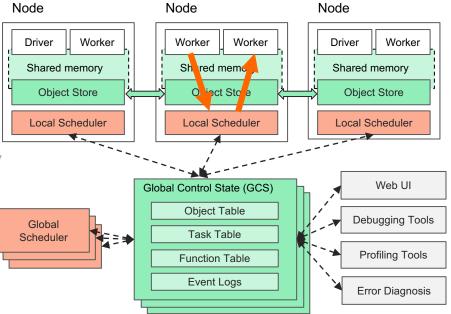
GCS: sharded database

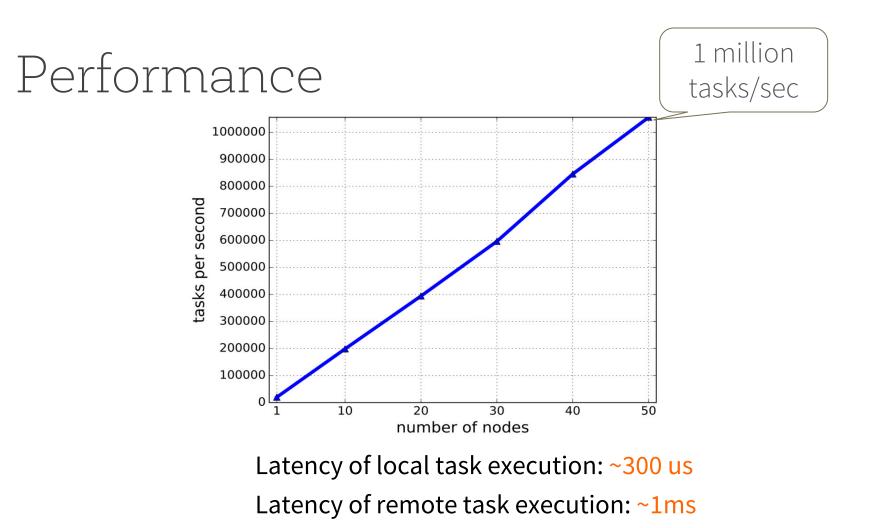
Distributed scheduler

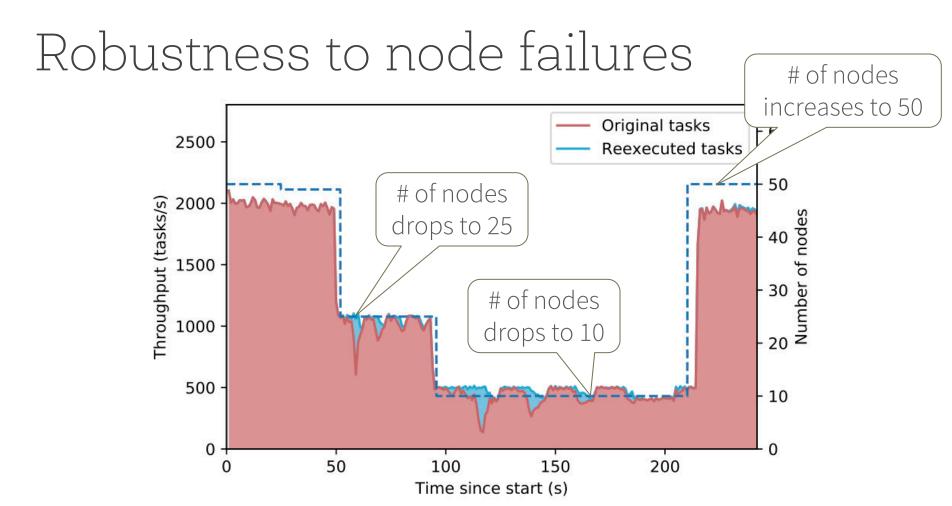
- Most tasks are scheduled locally
- Global scheduler plays role of load balancer

Tasks can spawn other tasks

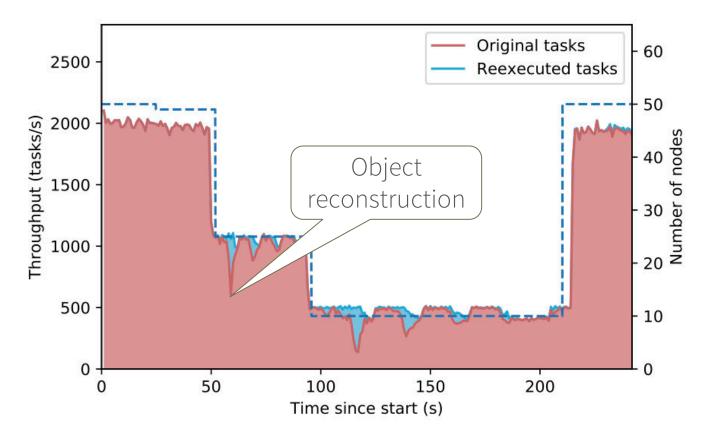
• Driver not bottleneck

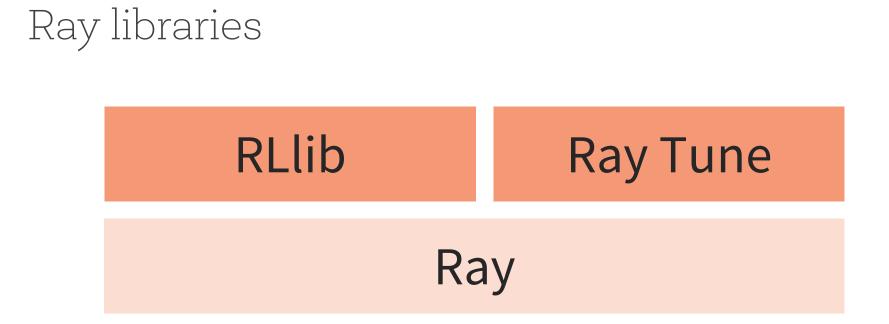




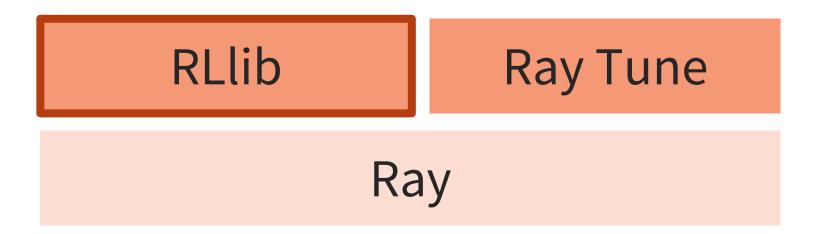


Robustness to node failures



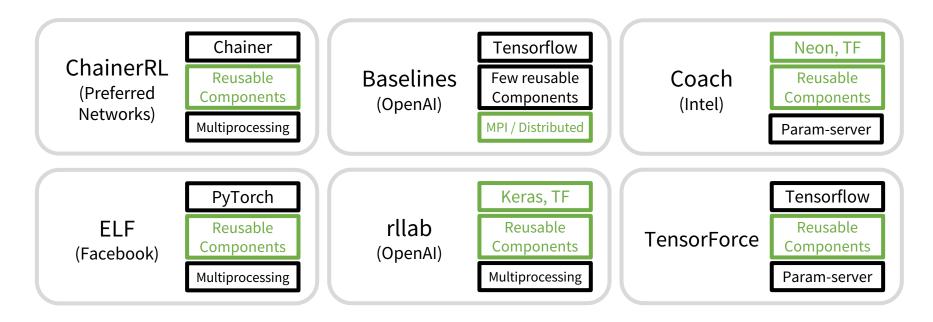


RLlib: a scalable and composable RL library Ray Tune: a flexible hyper-parameter search library



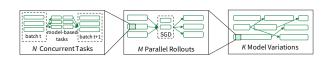
RLlib: a scalable and composable RL library Ray Tune: a flexible hyper-parameter search library

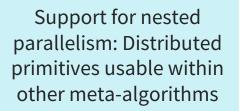
Many open source libraries for RL



None provides both scalability and composability

Rllib: scalable and composable RL Library

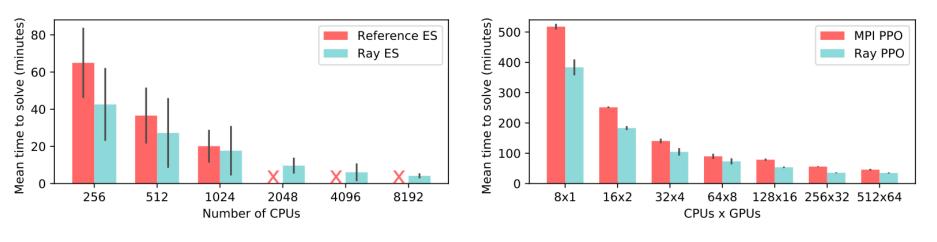




Easy to compose distributed RL algorithms such as AlphaGo Zero

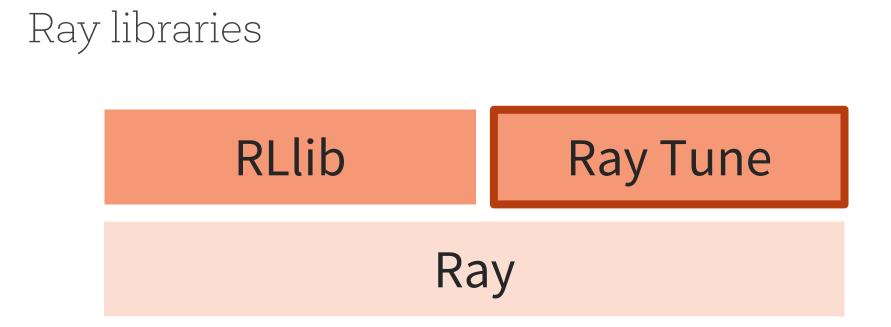
Broadly compatible with deep learning frameworks and thirdparty libraries

RLlib performance



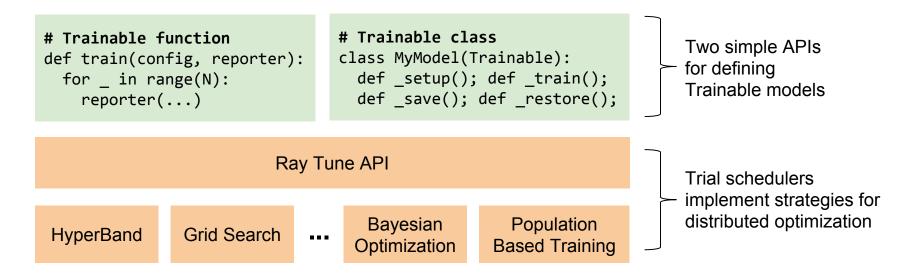
RLlib vs Redis-based ES implementation

RLlib vs OpenAl PPO implementation

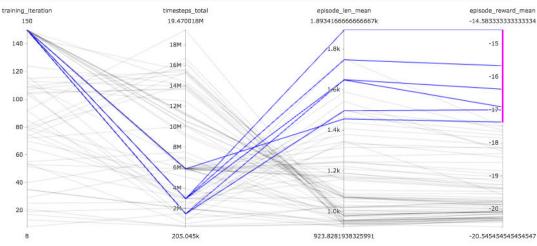


RLlib: a scalable and composable RL library Ray Tune: a flexible hyper-parameter search library

Implements a variety of search strategies Simple API to define trainable models



Rich visualization



rllab's VisKit

Google Vizir's parallel coordinates visualization

RL Applications

Mixed-autonomy traffic

SQL query optimization

Control hierarchies:

- Program synthesis
- Robotics manipulation

Mixed-autonomy traffic

SQL query optimization

Control hierarchies:

- Program synthesis
- Robotics manipulation

Mixed-autonomy traffic

Collaboration with PATH (IEOR, Berkeley)

Challenges:

- Highway accounts for 75% of transportation energy usage¹
- Commuters waste a full week in traffic each year²

Question: How might a small fraction of autonomous vehicles affect traffic dynamics?

¹https://www.nap.edu/read/12794/chapter/5

²https://www.cnbc.com/2016/08/09/commuters-waste-a-full-week-in-traffic-each-year.html

Single-lane experiment

Real experiment : Sugiyama, et al, 2008

230m ring road22 human drivers

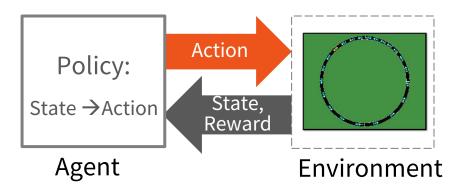
Instructions: drive at 30 km/h around the ring

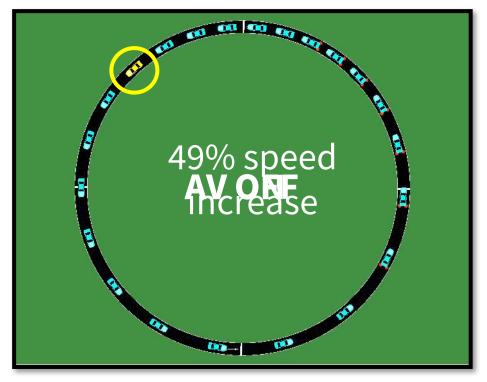
Result: traffic jams

Mixed-autonomy as RL

RL formulation

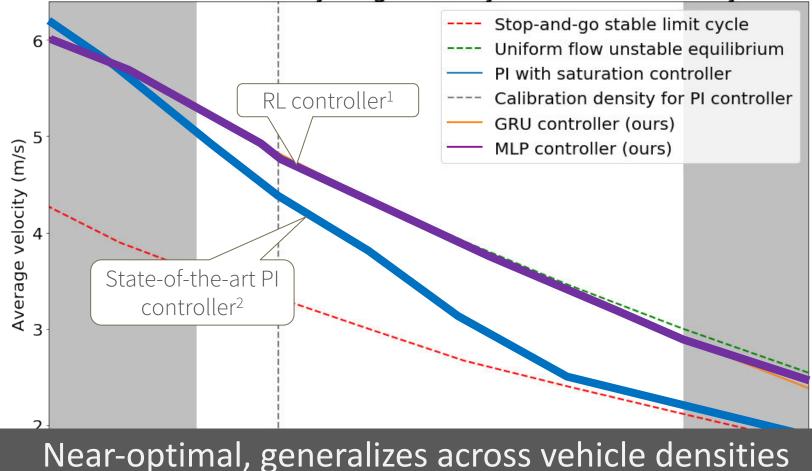
- State: car positions
- Action: acceleration, lane change
- Policy: TRPO, 3 hidden layers
- Reward: average velocity





Simulation: Wu, et al. IEEE T-RO, 2018

Mixed-autonomy ring road: system-level velocity

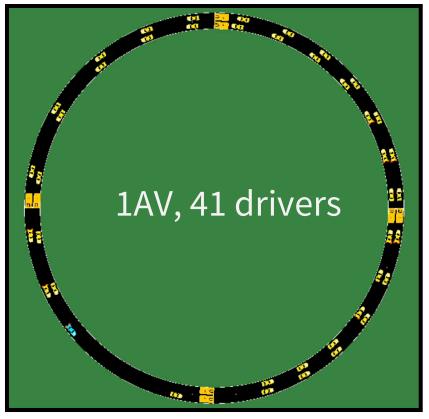


¹Wu, et al. IEEE T-RO, 2018; ²Stern, et al. 2017

Vehicle density (veh/m)

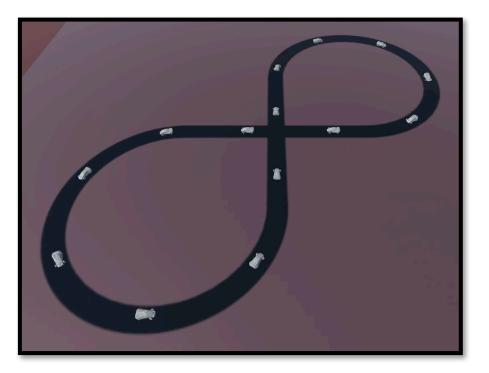
0.100

Multi-lane traffic

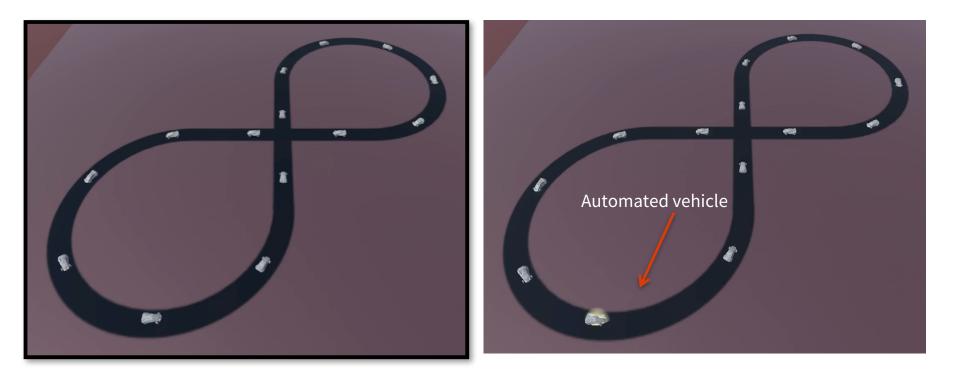


Simulation: Wu, et al. IEEE T-RO, 2018

Intersection

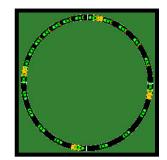


Intersection



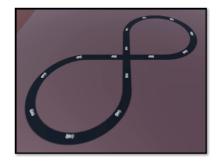
RLlib vs rllab: preliminary results

Task: stabilizing a single-lane ring Batch: 144 trajectories Measure: time to collect rollouts

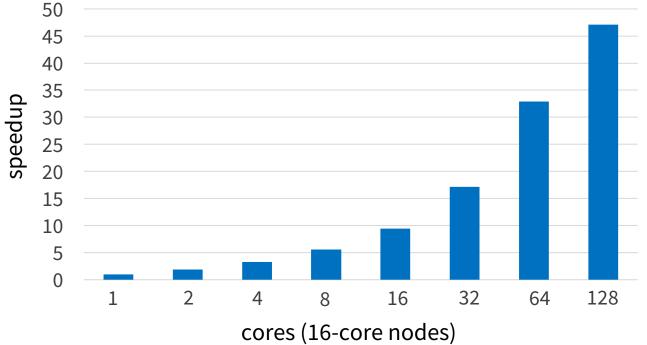


# nodes	# CPUs	rllab	RLlib (PPO)	RLlib speedup	\$\$ [*]
1	16	205s	191s	1.00x	\$0.24
1	72	79s	74s	2.58x	\$1.08
2	32	N/A	98s	1.95x	\$0.48
4	64	N/A	62s	3.08x	\$0.96
8	128	N/A	42s	4.55x	\$1.92

RLlib results



Task: stabilizing loopy intersection **Measure**: training time



Future work: full networks (OpenStreetMaps)



RL Applications

Mixed-autonomy traffic

SQL query optimization

Control hierarchies:

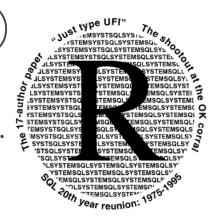
- Program synthesis
- Robotics manipulation

SQL query optimization (preliminary)

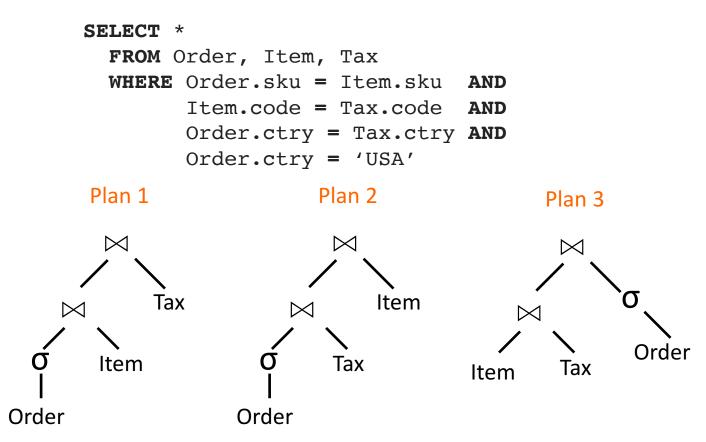
40+ years of research and 1,000s papers later...

Still hard – query optimizer highly sensitive to:

- Inaccuracies in cost model, e.g.,
 - Don't know how many distinct countries are in the database
- Dynamic execution environments, e.g.,
 - Don't know how much memory will be available during execution
 - Increasing challenge with multitenancy, e.g., BigQuery, Athena
- Heuristics, e.g., always "push down" the filter "USA"

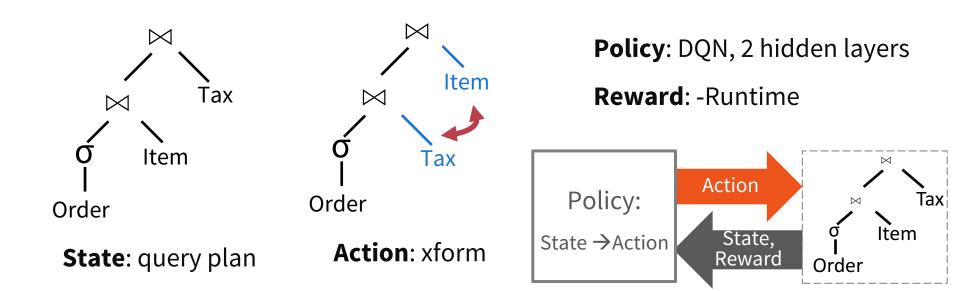


Examples of query plans



Examples of query plan

Query optimization as RL



- R(a,b,c): 1k Records
 S(b,d): 10k Records (multiplicity in b, no index)
- T(c,e): 10k Records (multiplicity in c, no index)

500 training queries randomly sampled

```
Test Query: SELECT count(1)
    FROM R,S,T
    WHERE R.b = S.b AND
        R.c = T.c
    GROUP BY b,c
```

- R(a,b,c): 1k Records
- S(b,d): 10k Records (multiplicity in b, no index)
- T(c,e): 10k Records (multiplicity in c, no index)

```
Postgres Plan: \gamma((R \bowtie S) \bowtie T) Aggregates after all joins
Learned Plan: \gamma(T \times S) \bowtie R Aggregates before R join
```

Postgres Plan: 18.3 s Learned Plan: 3.9 s 4.7x

Avoiding cartesian products is a common heuristic

R(a,b,c):1k Records
udf(b):Expensive UDF

500 training queries randomly sampled

Test Query: **SELECT** count(1) **FROM** R **WHERE** UDF(b) **GROUP BY** b

R(a,b,c):1k Records udf(b): Expensive UDF

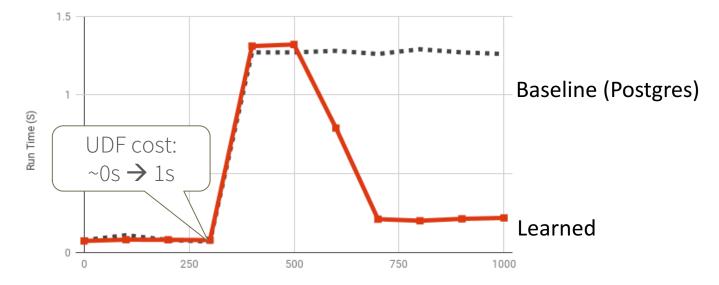
Postgres Plan: $\gamma(\sigma(R))$ Learned Plan: $\sigma(\gamma(R))$ Push down predicate Aggregate First

Postgres Plan: 1.27 s Learned Plan: 0.212 s

Cost models often fail to consider UDFs

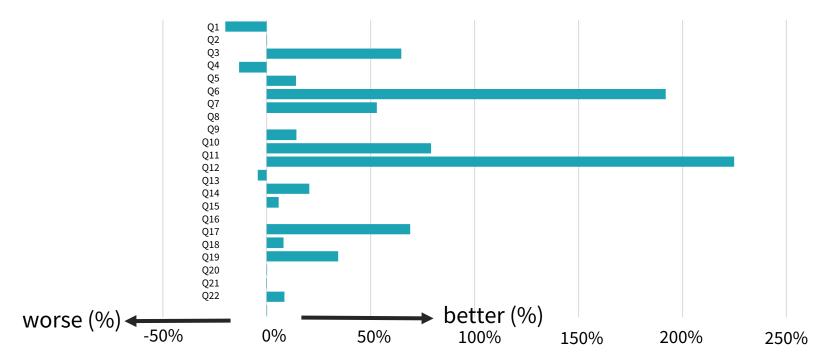
R(a,b,c): 1k Records

udf(b): UDF becomes more expensive to execute



Can adapt to dynamic environments

TPCH: preliminary results



Improves Postgres query optimizer performance (10k training queries, 100K test queries)

Future work

Improve generality, e.g.

- Nested queries, sort orders, more complex rewriting rules
- Select physical operator

Apache SparkSQL integration

RL Applications

Mixed-autonomy traffic

SQL query optimization

Control hierarchies:

- Program synthesis
- Robotics manipulation

Sample efficiency

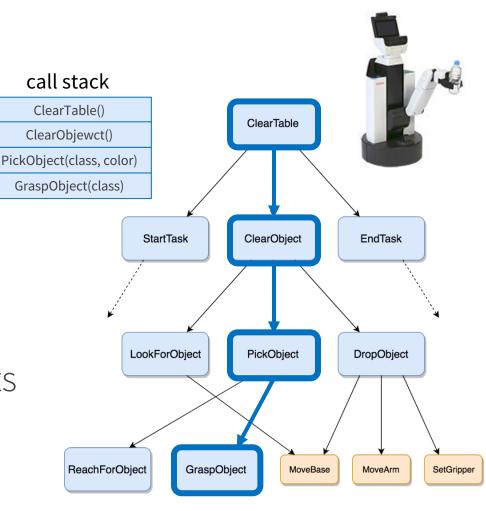
One of the big challenges of RL

Best case, it can take long time to converge

Worst case, can be very expensive, even unsafe to do many experiments

Control hierarchies

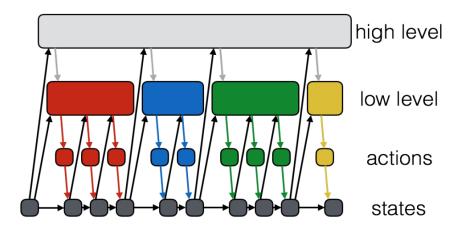
- Aggregate low level action in higher level procedures
 - Each proc. can
 - Call sub-procedures
 - Take actions
 - Terminate
 - Procedures take arguments
 - State is entire call-stack



Imitation learning

Complete demonstration includes:

- States / observations
- Elementary actions
- Procedure calls and terminations
- Call stack



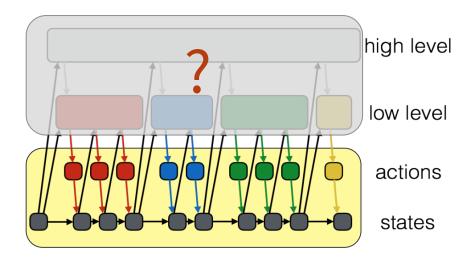
Strong vs. weak supervision

Call stack visible in demonstration?

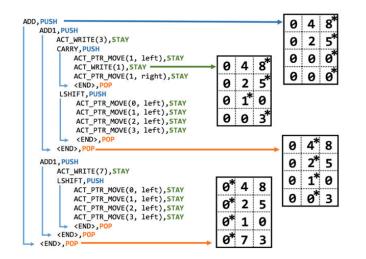
Yes → strong supervision
Imitate hierarchical structure

No \rightarrow weak supervision

• Need to fill in hierarchy



Experiment long-hand addition*



		Accuracy for input length	
Model	Strongly-supervised traces	500	1000
NPI (Reed & de Freitas, 2016) ²	160	<100%	<100%
NPL (Li et al., 2017)	10	100%	<100%
PHP	3	100%	100%

* Fox et al., ICLR 2018

Shared Imitation Learning of Hierarchical Skills for Robot Control

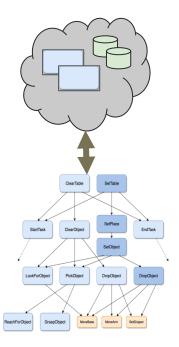
Roy Fox*, Ron Berenstein*, Sanjay Krishnan, Pieter Abbeel, Ion Stoica, Ken Goldberg

Future work

Imitation learning using weak supervision

Shared learning – a procedure skill can be:

- **Reuse**: apply current procedure to new task
- Retrain: train procedure to work for all tasks
- **Recreate**: train separate procedure for new task



RISELab goal: Develop open source platforms, tools and algorithms for intelligent real-time decisions on live data that are secure and explainable

Many decisions leverage AI/RL

Ray: a system for distributed AI

- RLlib and Ray Tune support highly scalable RL apps
- Open source: <u>https://github.com/ray-project/ray</u>
- Install: pip install ray

Promising RL apps