
RL Systems @ RISELab
Ion Stoica

UC Berkeley and Databricks

March 24, 2018

The two major trends of the past decade

AI

2

Harnessing data “revolution”

Big Data Value

3

Harnessing data “revolution”

Big Data ValueInsights Decisions

“Data is only as valuable as the decisions it enables”

4

Complex decisions powered by AI

Decisions

4

mission-critical apps in
adversarial, continually
changing environments

Challenge

6

RISELab Goal

Develop open source platforms, tools, and

algorithms for eal-time ntelligent decisions on

live-data which are ecure and xplainable

r i

s e

la

RISELab Goal

Develop open source platforms, tools, and

algorithms for eal-time ntelligent decisions on

live-data which are ecure and xplainable

riselab
UC Berkeley

r i

s e

AI

Security

Hardware

Systemsriselab
UC Berkeley

AI

• Reinforcement

learning (RL)
• Control

hierarchies

Security

• Shared learning

• Adversarial
learning

Hardware

• AI accelerators

• Hardware
enclaves

Systems

• Systems for RL

• Cloud-edge
systems

Example: Robotics

Reinforcement Learning (RL)

Agent continually learning by interacting with environment

Compute policy (i.e., state à action) to maximize reward

State, Reward

ActionPolicy:
State à Action

Agent Environment

RL significant benefit from scale

RL systems requirements

Nested parallelism

Heterogeneity

• Different task durations

• Different resource requirements (e.g., GPUs, TPUs, CPUs)

Real-time decisions

K Model Variations M Parallel Rollouts

SGD batch t
model-based

tasks batch t+1

N Concurrent Tasks

Ray: A system for distributed AI

Architecture

Dynamic task graph
Execution

model

Parallel Tasks Actors
Programming

model

Parallel Tasks

def read_array(file):

read ndarray “a” from “file”

return a

def add(a, b):

return np.add(a, b)

a = read_array(file1)

b = read_array(file2)

sum = add(a, b)

Parallel Tasks
@ray.remote

def read_array(file):

read ndarray “a” from “file”

return a

@ray.remote

def add(a, b):

return np.add(a, b)

a = read_array(file1)

b = read_array(file2)

sum = add(a, b)

Parallel Tasks
@ray.remote

def read_array(file):

read ndarray “a” from “file”

return a

@ray.remote

def add(a, b):

return np.add(a, b)

id1 = read_array.remote(file1)

id2 = read_array.remote(file2)

id = add.remote(id1, id2)

sum = ray.get(id)

• Blue variables are Object IDs

• Similar to futures

Parallel Tasks
@ray.remote

def read_array(file):

read ndarray “a” from “file”

return a

@ray.remote

def add(a, b):

return np.add(a, b)

id1 = read_array.remote(file1)

id2 = read_array.remote(file2)

id = add.remote(id1, id2)

sum = ray.get(id)

file1 file2

Parallel Tasks
@ray.remote

def read_array(file):

read ndarray “a” from “file”

return a

@ray.remote

def add(a, b):

return np.add(a, b)

id1 = read_array.remote(file1)

id2 = read_array.remote(file2)

id = add.remote(id1, id2)

sum = ray.get(id)

file1 file2

read_array

id1

Return id1 immediately,
before read_array()finishes

Parallel Tasks
@ray.remote

def read_array(file):

read ndarray “a” from “file”

return a

@ray.remote

def add(a, b):

return np.add(a, b)

id1 = read_array.remote(file1)

id2 = read_array.remote(file2)

id = add.remote(id1, id2)

sum = ray.get(id)

file1 file2

read_array

id1

read_array

id2

Dynamic task graph:
build at runtime

Parallel Tasks
@ray.remote

def read_array(file):

read ndarray “a” from “file”

return a

@ray.remote

def add(a, b):

return np.add(a, b)

id1 = read_array.remote(file1)

id2 = read_array.remote(file2)

id = add.remote(id1, id2)

sum = ray.get(id)

file1 file2

read_array

id1

read_array

id2

add

id

Every task scheduled,
but not finished yet

Parallel Tasks
@ray.remote

def read_array(file):

read ndarray “a” from “file”

return a

@ray.remote

def add(a, b):

return np.add(a, b)

id1 = read_array.remote(file1)

id2 = read_array.remote(file2)

id = add.remote(id1, id2)

sum = ray.get(id)

file1

read_array

id1

file2

read_array

id2

add

id

ray.get() block until

result available

Tasks, not enough!

Might not have access to simulator state, can’t do
state = simulator.initialize()

action = policy.compute(state)

Some state expensive to create
(e.g., DNN on GPUs)

• Better to create it once and then reinitialize for each task

Actors

class Counter(object):

def __init__(self):

self.value = 0

def inc(self):

self.value += 1

return self.value

c = Counter()

c.inc()

c.inc()

c.inc()

Actors

@ray.remote

class Counter(object):

def __init__(self):

self.value = 0

def inc(self):

self.value += 1

return self.value

c = Counter.remote()

id1 = c.inc.remote ()

id2 = c.inc.remote ()

id3 = c.inc.remote ()

ray.get([id1, id2, id3]) # This returns [1, 2, 3]

• State shared across actor’s methods

• Actor methods return object IDs

inc

Counter

inc

inc

id1

id2

id3

Actors

@ray.remote(num_gpus = 4)

class Counter(object):

def __init__(self):

self.value = 0

def inc(self):

self.value += 1

return self.value

c = Counter.remote()

id1 = c.inc.remote ()

id2 = c.inc.remote ()

id3 = c.inc.remote ()

ray.get([id1, id2, id3]) # This returns [1, 2, 3]

• State shared across actor’s methods

• Actor methods return object IDs

• Can specify # of GPUs

inc

Counter

inc

inc

id1

id2

id3

Example

Try lots of different policies and see which work best!

Pseudocode

class Worker(object):

def do_simulation(policy, seed):

perform simulation and return reward

actions

observations
rewards

PolicySimulator

Pseudocode

class Worker(object):

def do_simulation(policy, seed):

perform simulation and return reward

workers = [Worker() for i in range(20)]

policy = initial_policy()

actions

observations
rewards

PolicySimulator

Pseudocode

class Worker(object):

def do_simulation(policy, seed):

perform simulation and return reward

workers = [Worker() for i in range(20)]

policy = initial_policy()

for i in range(200):

seeds = generate_seeds(i)

rewards = [workers[j].do_simulation(policy, seeds[j])

for j in range(20)]

policy = compute_update(policy, rewards, seeds)

actions

observations
rewards

PolicySimulator

Pseudocode
@ray.remote

class Worker(object):

def do_simulation(policy, seed):

perform simulation and return reward

workers = [Worker() for i in range(20)]

policy = initial_policy()

for i in range(200):

seeds = generate_seeds(i)

rewards = [workers[j].do_simulation(policy, seeds[j])

for j in range(20)]

policy = compute_update(policy, rewards, seeds)

actions

observations
rewards

PolicySimulator

Pseudocode
@ray.remote

class Worker(object):

def do_simulation(policy, seed):

perform simulation and return reward

workers = [Worker.remote() for i in range(20)]

policy = initial_policy()

for i in range(200):

seeds = generate_seeds(i)

rewards = [workers[j].do_simulation(policy, seeds[j])

for j in range(20)]

policy = compute_update(policy, rewards, seeds)

actions

observations
rewards

PolicySimulator

Pseudocode
@ray.remote

class Worker(object):

def do_simulation(policy, seed):

perform simulation and return reward

workers = [Worker.remote() for i in range(20)]

policy = initial_policy()

for i in range(200):

seeds = generate_seeds(i)

rewards = [workers[j].do_simulation.remote(policy, seeds[j])

for j in range(20)]

policy = compute_update(policy, rewards, seeds)

actions

observations
rewards

PolicySimulator

Pseudocode
@ray.remote

class Worker(object):

def do_simulation(policy, seed):

perform simulation and return reward

workers = [Worker.remote() for i in range(20)]

policy = initial_policy()

for i in range(200):

seeds = generate_seeds(i)

rewards = [workers[j].do_simulation.remote(policy, seeds[j])

for j in range(20)]

policy = compute_update(policy, ray.get(rewards), seeds)

actions

observations
rewards

PolicySimulator

Ray Architecture

In-memory object store

• Immutable objects

Serialization using
Apache Arrow

Node Node Node

Shared memory Shared memory Shared memory

Driver Worker Worker Worker Driver Worker

Object Store Object Store Object Store

Ray Architecture

Node Node NodeIn-memory object store

• Immutable objects

Distributed scheduler
Local Scheduler Local Scheduler Local Scheduler

Shared memory Shared memory Shared memory

Driver Worker Worker Worker Driver Worker

Object Store Object Store Object Store

Ray Architecture

Node Node NodeIn-memory object store

• Immutable objects

Distributed scheduler
Local Scheduler Local Scheduler Local Scheduler

Shared memory Shared memory Shared memory

Driver Worker Worker Worker Driver Worker

Object Store Object Store Object Store

Global

Scheduler

Global

Scheduler

Ray Architecture

Node Node NodeIn-memory object store

• Immutable objects

Distributed scheduler

Centralized control store

• Stateless components

Local Scheduler Local Scheduler Local Scheduler

Shared memory Shared memory Shared memory

Driver Worker Worker Worker Driver Worker

Object Store Object Store Object Store

Object Table

Task Table

Function Table

Event Logs

Global Control State (GCS)

Global

Scheduler

Global

Scheduler

Global

Scheduler

Ray Architecture

Node Node NodeIn-memory object store

• Immutable objects

Distributed scheduler

Centralized control store

• Stateless components

Local Scheduler Local Scheduler Local Scheduler

Shared memory Shared memory Shared memory

Driver Worker Worker Worker Driver Worker

Object Store Object Store Object Store

Object Table

Task Table

Function Table

Event Logs

Global Control State (GCS)

Global

Scheduler

Global

Scheduler

Global

Scheduler

Web UI

Debugging Tools

Profiling Tools

Error Diagnosis

Highly Scalable

GCS: sharded database

Global

Scheduler

Global

Scheduler

Object Table

Task Table

Function Table

Event Logs

Global Control State (GCS)

Local Scheduler

Node

Global

Scheduler

Web UI

Debugging Tools

Profiling Tools

Error Diagnosis

Object Store

Driver Worker

Shared memory

Local Scheduler

Node

Object Store

Worker Worker

Shared memory

Local Scheduler

Node

Object Store

Driver Worker

Shared memory

Highly Scalable

GCS: sharded database

Distributed scheduler

• Most tasks are scheduled locally

• Global scheduler plays role of
load balancer Global

Scheduler

Global

Scheduler

Object Table

Task Table

Function Table

Event Logs

Global Control State (GCS)

Local Scheduler

Node

Global

Scheduler

Web UI

Debugging Tools

Profiling Tools

Error Diagnosis

Object Store

Driver Worker

Shared memory

Local Scheduler

Node

Object Store

Worker Worker

Shared memory

Local Scheduler

Node

Object Store

Driver Worker

Shared memory

Highly Scalable

GCS: sharded database

Distributed scheduler

• Most tasks are scheduled locally

• Global scheduler plays role of
load balancer

Tasks can spawn other tasks

• Driver not bottleneck

Global

Scheduler

Global

Scheduler

Object Table

Task Table

Function Table

Event Logs

Global Control State (GCS)

Local Scheduler

Node

Global

Scheduler

Web UI

Debugging Tools

Profiling Tools

Error Diagnosis

Object Store

Driver Worker

Shared memory

Local Scheduler

Node

Object Store

Worker Worker

Shared memory

Local Scheduler

Node

Object Store

Driver Worker

Shared memory

Performance
1 million
tasks/sec

Latency of local task execution: ~300 us

Latency of remote task execution: ~1ms

Robustness to node failures

of nodes
drops to 25

of nodes
drops to 10

of nodes
increases to 50

Robustness to node failures

Object
reconstruction

Ray libraries

RLlib: a scalable and composable RL library

Ray Tune: a flexible hyper-parameter search library

Ray

RLlib Ray Tune

Ray libraries

RLlib: a scalable and composable RL library

Ray Tune: a flexible hyper-parameter search library

Ray

RLlib Ray Tune

Many open source libraries for RL

ChainerRL
(Preferred
Networks)

Chainer

Reusable
Components

Multiprocessing

ELF
(Facebook)

PyTorch

Reusable
Components

Multiprocessing

Baselines
(OpenAI)

Tensorflow

Few reusable
Components

MPI / Distributed

rllab
(OpenAI)

Keras, TF

Reusable
Components

Multiprocessing

TensorForce

Tensorflow

Reusable
Components

Param-server

Coach
(Intel)

Neon, TF

Reusable
Components

Param-server

None provides both scalability and composability

Rllib: scalable and composable RL Library

batch t
model-based

tasks
batch t+1

N Concurrent Tasks M Parallel Rollouts

SGD

KModel Variations

Support for nested
parallelism: Distributed
primitives usable within
other meta-algorithms

Easy to compose
distributed RL algorithms

such as AlphaGo Zero

Broadly compatible with
deep learning

frameworks and third-
party libraries

RLlib performance

RLlib vs Redis-based
ES implementation

RLlib vs OpenAI
PPO implementation

Ray libraries

RLlib: a scalable and composable RL library

Ray Tune: a flexible hyper-parameter search library

Ray

RLlib Ray Tune

Ray Tune

Implements a variety of search strategies

Simple API to define trainable models

Trainable function
def train(config, reporter):
 for _ in range(N):
 reporter(...)

Trainable class
class MyModel(Trainable):
 def _setup(); def _train();
 def _save(); def _restore();

Ray Tune API

HyperBand Grid Search Population
Based Training

Bayesian
Optimization

...

Trial schedulers
implement strategies for
distributed optimization

Two simple APIs
for defining
Trainable models

Rich visualization

rllab’s VisKit

Google Vizir’s parallel

coordinates visualization

RL Applications

Mixed-autonomy traffic

SQL query optimization

Control hierarchies:

• Program synthesis

• Robotics manipulation

55

RL Applications

Mixed-autonomy traffic

SQL query optimization

Control hierarchies:

• Program synthesis

• Robotics manipulation

56

Mixed-autonomy traffic

Collaboration with PATH (IEOR, Berkeley)

Challenges:

• Highway accounts for 75% of transportation energy usage1

• Commuters waste a full week in traffic each year2

Question: How might a small fraction of
autonomous vehicles affect traffic dynamics?

1https://www.nap.edu/read/12794/chapter/5
2https://www.cnbc.com/2016/08/09/commuters-waste-a-full-week-in-traffic-each-year.html

Single-lane experiment

230m ring road

22 human drivers

Instructions: drive at
30 km/h around the ring

Result: traffic jams

Real experiment : Sugiyama, et al, 2008

Mixed-autonomy as RL

RL formulation

• State: car positions

• Action: acceleration, lane change

• Policy: TRPO, 3 hidden layers

• Reward: average velocity

59

State,
Reward

Action
Policy:

Agent Environment

State àAction

Simulation: Wu,	et	al.	IEEE	T-RO,	2018

AV OFFAV ON
49% speed

increase

Near-optimal,	generalizes	across	vehicle	densities

State-of-the-art PI

controller2

1Wu,	et	al.	IEEE	T-RO,	2018;	2Stern,	et	al.	2017

RL controller1

Multi-lane traffic

Simulation: Wu,	et	al.	IEEE	T-RO,	2018

1AV, 41 drivers

62

Intersection

Intersection

Automated vehicle

RLlib vs rllab: preliminary results

nodes # CPUs rllab
RLlib

(PPO)

RLlib

speedup
$$

*

1 16 205s 191s 1.00x $0.24

1 72 79s 74s 2.58x $1.08

2 32 N/A 98s 1.95x $0.48

4 64 N/A 62s 3.08x $0.96

8 128 N/A 42s 4.55x $1.92

Task: stabilizing a single-lane ring
Batch: 144 trajectories
Measure: time to collect rollouts

*	AWS	EC2	Spot	Pricing	(per	hour)

RLlib results

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128

sp
e

e
d

u
p

cores (16-core nodes)

Task: stabilizing loopy intersection
Measure: training time

Bay Bridge

San Francisco

67

Future work: full networks (OpenStreetMaps)

RL Applications

Mixed-autonomy traffic

SQL query optimization

Control hierarchies:

• Program synthesis

• Robotics manipulation

SQL query optimization (preliminary)

40+ years of research and 1,000s papers later…

Still hard – query optimizer highly sensitive to:

• Inaccuracies in cost model, e.g.,

– Don’t know how many distinct countries are in the database

• Dynamic execution environments, e.g.,

– Don’t know how much memory will be available during execution

– Increasing challenge with multitenancy, e.g., BigQuery, Athena

• Heuristics, e.g., always “push down” the filter “USA”

Examples of query plans

⋈
σ

Order

Item

⋈
Tax

Plan	1

⋈
σ

Order

Tax

⋈
Item

Plan	2

⋈
Tax

⋈
Plan	3

Item

σ

Order

SELECT *

FROM Order, Item, Tax

WHERE Order.sku = Item.sku AND

Item.code = Tax.code AND

Order.ctry = Tax.ctry AND

Order.ctry = ‘USA’

Examples of query plan

⋈
σ

Order

Item

⋈
Tax

Plan 1

⋈
σ

Order

Tax

⋈
Item

Plan 2

⋈
Tax

⋈
Plan 3

Item

σ

Order

Est. Cost:

970

Est. Cost:

540
Est. Cost:

2400

SELECT *

FROM Order, Item, Tax

WHERE Order.sku = Item.sku AND

Item.code = Tax.code AND

Order.ctry = Tax.ctry AND

Order.ctry = ‘USA’

Query optimization as RL

⋈
σ

Order

Item

⋈
Tax

State: query plan

⋈
σ

Order

⋈

Tax

Action: xform

Item

Policy: DQN, 2 hidden layers

Reward: -Runtime

State,
Reward

Action
Policy: ⋈

σ

Order

Item

⋈

Tax

State àAction

Interesting results

R(a,b,c): 1k Records
S(b,d): 10k Records (multiplicity in b, no index)

T(c,e): 10k Records (multiplicity in c, no index)

SELECT count(1)

FROM R,S,T

WHERE R.b = S.b AND

R.c = T.c

GROUP BY b,c

Test Query:

500 training queries randomly sampled

Interesting results

R(a,b,c): 1k Records
S(b,d): 10k Records (multiplicity in b, no index)

T(c,e): 10k Records (multiplicity in c, no index)

Postgres Plan: Aggregates after all joins

Learned Plan: Aggregates before R join

Postgres Plan: 18.3 s

Learned Plan: 3.9 s

Avoiding	cartesian	products	is	a	common	heuristic

4.7x

Interesting results

R(a,b,c): 1k Records

udf(b): Expensive UDF

SELECT count(1)

FROM R

WHERE UDF(b)

GROUP BY b

Test Query:

500 training queries randomly sampled

Interesting results

Postgres Plan: Push down predicate

Learned Plan: Aggregate First

Postgres Plan: 1.27 s

Learned Plan: 0.212 s

Cost models often fail to consider UDFs

R(a,b,c): 1k Records

udf(b): Expensive UDF

8x

Interesting Results
R(a,b,c): 1k Records

udf(b): UDF becomes more expensive to execute

Baseline (Postgres)

Learned

Can adapt to dynamic environments

UDF cost:

~0s à 1s

TPCH: preliminary results

78

Improves Postgres query optimizer performance
(10k training queries, 100K test queries)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22

better (%)worse (%)
0% 50% 100% 150% 200% 250%-50%

Future work

Improve generality, e.g.

• Nested queries, sort orders, more complex rewriting rules

• Select physical operator

Apache SparkSQL integration

RL Applications

Mixed-autonomy traffic

SQL query optimization

Control hierarchies:

• Program synthesis

• Robotics manipulation

80

Sample efficiency

One of the big challenges of RL

Best case, it can take long time to converge

Worst case, can be very expensive, even
unsafe to do many experiments

Control hierarchies

Aggregate low level action
in higher level procedures

● Each proc. can
○ Call sub-procedures
○ Take actions

○ Terminate

● Procedures take arguments
● State is entire call-stack

ClearTable()

ClearObjewct()

PickObject(class, color)

GraspObject(class)

call stack

Imitation learning

Complete demonstration includes:

• States / observations

• Elementary actions

• Procedure calls and terminations

• Call stack

Strong vs. weak supervision

Call stack visible in demonstration?

Yes à strong supervision

• Imitate hierarchical structure

No à weak supervision

• Need to fill in hierarchy

?

Experiment long-hand addition*

*	Fox	et	al.,	ICLR	2018

Future work

Imitation learning using weak supervision

Shared learning – a procedure skill can be:

• Reuse: apply current procedure to new task

• Retrain: train procedure to work for all tasks

• Recreate: train separate procedure for new task

Summary

RISELab goal: Develop open source platforms, tools
and algorithms for intelligent real-time decisions on

live data that are secure and explainable

Many decisions leverage AI/RL

Ray: a system for distributed AI
• RLlib and Ray Tune support highly scalable RL apps

• Open source: https://github.com/ray-project/ray

• Install: pip install ray

Promising RL apps

