
RISELab
(Real-time Intelligent Secure Execution)

Ion Stoica
ScaledML

March 25, 2017

From batch data to advanced analytics

AMPLab

From live data to real-time decisions

RISELab

Why?

Data only as valuable as the decisions (actions) it enables

Why?

Data only as valuable as the decisions (actions) it enables

What is a good decision?

• Faster decisions better than slower decisions

• Decisions on fresh data better than decisions on stale data

• Decisions on personalized data better than on generic data

What we want?

Real-time decisions

on live data

with strong security

decide in ms

the current state of the environment

privacy, confidentiality, integrity

Typical decision system

Decision System

Query

Decision

Environment
+

sensors &
actuators

Observations, Feedback

Preprocess Intermediate
data

Decision

Engine

Typical decision system

Decision System

Query

Decision

Environment
+

sensors &
actuators

Observations, Feedback

Preprocess Intermediate
data

Decision

Engine

Live
Update latency
(e.g., ~1 seconds)

Real-time
decision latency

(e.g., ~10 ms)

Secure

Example of decision systems

Decision System
Obs.

Action

Update

Policy
Policy
obs à
action

Query

Policy

Observations, Rewards

Reinforcement
Learning Systems

Decision System
Query

Action
Training

Models
(diff. tradeoffs

complexity/
accuracy)

Model

Serving

Feedback

Observations, Feedback

ML Pipeline

What else do we want from decisions?

Intelligent: complex decisions in uncertain environments

What else do we want from decisions?

Intelligent: complex decisions in uncertain environments

Robust: handle complex noise

What else do we want from decisions?

Intelligent: complex decisions in uncertain environments

Robust: handle complex noise, failures, unforeseen inputs

Need ability to say “I don’t know!”

What else do we want from decisions?

Intelligent: complex decisions in uncertain environments

Robust: handle complex noise, failures, unforeseen inputs

Explainable: ability to explain non-obvious decisions

RISELab goal

Develop open source platforms, tools, and algorithms

for intelligent real-time decisions on live-data

Some research directions

Secure Real-time Decisions Stack (SRDS)
• Open source platform to develop of RISE like apps

• Reinforcement Learning (RL) as one of key app patterns

• Secure from ground up

Learning control hierarchies: speedup learning, training

Shared learning: learn over confidential data

Some research directions

Secure Real-time Decisions Stack (SRDS)
• Open source platform to develop of RISE like apps

• Reinforcement Learning (RL) as one of key app patterns

• Secure from ground up

Learning control hierarchies: speedup learning, training

Shared learning: learn over confidential data

Secure Real-time Decision Stack (SRDS)

scheduler object store

RISE μkernel

Ray Clipper …

Ground (data context service)

Fluent

optimizer

Spark/
Opaque

T
im

e

M
a

ch
in

e

SRDS: Microkernel

scheduler object store

RISE μkernel

Ray Clipper …

Ground (metadata manager)

Fluent

optimizer

Spark/
Opaque

T
im

e

M
a

ch
in

e

Minimalist execution engine:
•  Support both data flow and task-parallel execution models

•  High-throughput, low-latency scheduler

SRDS: Ground

scheduler object store

RISE μkernel

Ray Clipper …

Ground (data context service)

Fluent

optimizer

Spark/
Opaque

T
im

e

M
a

ch
in

e

Central repository for models, APIs to capture the context in
which data gets used and produced

SRDS: Time machine

scheduler object store

RISE μkernel

Ray Clipper …

Ground (data context service)

Fluent

optimizer

Spark/
Opaque

T
im

e

M
a

ch
in

e

Replaying of apps at fine granularity

•  Simplify development, debugging

•  Robustness: replay against perturbed inputs

•  Explainability: identify inputs causing decision

•  Security: confirm vulnerabilities, test security

patches, compliance auditing

SRDS: Application frameworks

scheduler object store

RISE μkernel

Ray Clipper …

Ground (metadata manager)

Fluent

optimizer

Spark/
Opaque

T
im

e

M
a

ch
in

e

Computation frameworks to simplify development of RISE apps
•  Ray: task-parallel framework to support RL workloads

•  Clipper: model serving supporting ensembles & cascading models

•  Fluent: fine grained data flow execution framework

•  Opaque: secure SparkSQL

SRDS: Application frameworks

scheduler object store

RISE μkernel

Ray Clipper …

Ground (metadata manager)

Fluent

optimizer

Spark/
Opaque

T
im

e

M
a

ch
in

e

Ray

Targets Reinforcement Learning (RL) applications

Currently includes μkernel functionality

Decision System
Obs.

Action

Update

Policy
Policy
obs à
action

Query

Policy

Observations, Rewards

RL requirements

Process inputs from different sensors in parallel & real-time

RL requirements

Process inputs from different sensor in parallel & real-time

Execute large number of rollouts (simulations)

RL requirements

Process inputs from different sensor in parallel & real-time

Execute large number of rollouts (simulations)

Rollouts outcomes are used to update policy (e.g., SGD)

Update
policy

Update
policy

…

…
 Update

policy

rollouts

Update
policy

…

…
 Update

policy

Update
policy

…
 Update

policy

rollout

Update
policy

…

RL requirements

Process inputs from different sensor in parallel & real-time

Execute large number of rollouts (simulations)

Rollouts outcomes are used to update policy (e.g., SGD)

• Heterogeneous durations, dynamic execution graph

• 100s millions of rollouts, each rollout as little as a few msec

RL requirements

Process inputs from different sensor in parallel & real-time

Execute large number of rollouts (simulations)

Rollouts outcomes are used to update policy (e.g., SGD)

Often policies implemented by DNNs

actions

observations

Ray goals

Flexibility
•  Combine neural networks, planning, search, simulation, etc

• Heterogeneous tasks: CPUs/GPUs, durations, computation

•  Fine-grained data and task dependencies, dynamic execution

Performance
• Millions of tasks per second with msec level latencies

•  Adapt to changing work in real-time

Easy of use
• Minimal changes to parallelize existing Python serial code

Ray architecture

Centralized control store
•  Stateless components

In-memory object store
•  Leverage Arrow

Dist. scheduling

Prototype
•  Python bindings

•  C/C++ backend

 29

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	

actions

state, reward

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	

actions

state, reward

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	

actions

state, reward

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	

actions

state, reward

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	

actions

state, reward

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	
#	One	step	of	the	algorithm	

trajectories	=	[simulation.remote(policy)	for	_	in	range(10000)]	

while	True:	

		#	Wait	for	next	trajectory	to	become	ready	

		trajectory,	trajectories	=	ray.wait(trajectories)	

		policy.update(ray.get(trajectory))	#	Update	model	

		#	Start	new	simulation	

		trajectories.append(simulation.remote(policy))	

actions

state, reward

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	
#	One	step	of	the	algorithm	

trajectories	=	[simulation.remote(policy)	for	_	in	range(10000)]	

while	True:	

		#	Wait	for	next	trajectory	to	become	ready	

		trajectory,	trajectories	=	ray.wait(trajectories)	

		policy.update(ray.get(trajectory))	#	Update	model	

		#	Start	new	simulation	

		trajectories.append(simulation.remote(policy))	

actions

state, reward

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	
#	One	step	of	the	algorithm	

trajectories	=	[simulation.remote(policy)	for	_	in	range(10000)]	

while	True:	

		#	Wait	for	next	trajectory	to	become	ready	

		trajectory,	trajectories	=	ray.wait(trajectories)	

		policy.update(ray.get(trajectory))	#	Update	model	

		#	Start	new	simulation	

		trajectories.append(simulation.remote(policy))	

actions

state, reward

Example: Asynchronous RL with Ray
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	
#	One	step	of	the	algorithm	

trajectories	=	[simulation.remote(policy)	for	_	in	range(10000)]	

while	True:	

		#	Wait	for	next	trajectory	to	become	ready	

		trajectory,	trajectories	=	ray.wait(trajectories)	

		policy.update(ray.get(trajectory))	#	Update	model	

		#	Start	new	simulation	

		trajectories.append(simulation.remote(policy))	

actions

state, reward

Example: Learning to run

SRDS: Application frameworks

scheduler object store

RISE μkernel

Ray Clipper …

Ground (metadata manager)

Fluent

optimizer

Spark/
Opaque

T
im

e

M
a

ch
in

e

VW	

Clipper
(serving & inference system)

Flexibility
•  Uniform interface across models
•  Model life cycle management

Performance
•  Prediction caching
•  Ensembles, cascading models
•  Control latency-accuracy tradeoff

Some research directions

Secure Real-time Decisions Stack (SRDS)
• Open source platform to develop of RISE like apps

• Reinforcement Learning (RL) as one of key app patterns

• Secure from ground up

Learning control hierarchies: speedup learning, training

Shared learning: learn over confidential data

Learning control hierarchies
Many apps consists of a sequence of decisions/actions, e.g.,

• Driving : turn wheel, step on gas or break, signal

Challenge: huge state and action spaces

• Expensive to learn and train

Approach: indentify sequence of actions, called options, e.g.,

• Driving: change lines

Learning control hierarchies
Many apps consists of a sequence of decisions/actions, e.g.,

• Driving : turn wheel, step on gas or break, signal

Challenge: huge solution space

• Expensive to learn and train

Approach: indentify sequence of actions, called options, e.g.,

• Driving: change lines

• Advantage: reduce dramatically action space

– Faster learning and generalization

• Most prior methods require human design, few end-to-end

• Our research: learn hierarchies of options automatically

Discovery Deep Options (DDO)

Compute gradients with respect to policy parameters
Decouple levels and avoid joint training

h1,1 h1,3 h1,2

h2,1 h2,3 h2,4 h2,2

Level 1

(DDO)

Level 2
(DDO)

Level 3
(DeepRL)

π

Example: Four room maze example

Example: Four room maze example

Example: Four room maze example

Results: Atari RAM

Results: SeaQuest RAM

Some research directions

Secure Real-time Decisions Stack (SRDS)
• Open source platform to develop of RISE like apps

• Reinforcement Learning (RL) as one of key app patterns

• Secure from ground up

Learning control hierarchies: speedup learning, training

Shared learning: learn over confidential data

Shared Learning
Every cloud provider wants to provide ML as a Service (MLaaS)

Every enterprise wants to get quality prediction on its data

Many enterprises wants to keep their data confidential

Every cloud provider wants to learn across customers’ data to improve pred.

ML as a Service
(training &

prediction)

Cloud provider

Shared Learning
Every cloud provider wants to provide ML as a Service (MLaaS)

Every enterprise wants to get quality prediction on its data

Many enterprises wants to keep their data confidential

Every cloud provider wants to learn across customers’ data to improve pred.

ML as a Service
(training &

prediction)

Confidential
Data

Enterprise customer

Prediction?

Cloud provider

Shared Learning
Every cloud provider wants to provide ML as a Service (MLaaS)

Every enterprise wants to get quality prediction on its data

Many enterprises wants to keep their data confidential

Every cloud provider wants to learn across customers’ data to improve pred.

ML as a Service
(training &

prediction)

Confidential
Data

Enterprise customer

Prediction?

Cloud provider

Shared Learning
Every cloud provider wants to provide ML as a Service (MLaaS)

Every enterprise wants to get quality prediction on its data

Many enterprises wants to keep their data confidential

Every cloud provider wants to learn across customers’ data to improve pred.

ML as a Service
(training &

prediction)

Confidential
Data

Enterprise customers

Prediction?

Cloud provider

Shared Learning
Every cloud provider wants to provide ML as a Service (MLaaS)

Every enterprise wants to get quality prediction on its data

Many enterprises wants to keep their data confidential

Every cloud provider wants to learn across customers’ data to improve pred.

ML as a Service
(training &

prediction)

Confidential
Data

Enterprise customers

Prediction?

data*

prediction
?

How can cloud providers learn across customers and perform
predictions while preserving customer’s data confidentiality?

Cloud provider

Shared Learning
Every cloud provider wants to provide ML as a Service (MLaaS)

Every enterprise wants to get quality prediction on its data

Many enterprises wants to keep their data confidential

Every cloud provider wants to learn across customers’ data to improve pred.

ML as a Service
(training &

prediction)

Confidential
Data

Enterprise customers

Prediction?

data*

prediction
?

How can cloud providers incentivize organizations to share data?

Cloud provider

RISELab goal

Many exciting challenges in ML/AI, systems, security,

architectures

Develop open source platforms, tools and algorithms
for real-time decisions on live data with strong security

Thanks!

