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From batch data to advanced analytics 

AMPLab 

From live data to real-time decisions 

RISELab 



Why? 

Data only as valuable as the decisions (actions) it enables 
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What is a good decision? 

• Faster decisions better than slower decisions 

• Decisions on fresh data better than decisions on stale data 

• Decisions on personalized data better than on generic data 

 

 

 



What we want? 

Real-time decisions  

 

on live data 

 

with strong security 

 

decide in ms 

the current state of the environment 

privacy, confidentiality, integrity 
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What else do we want from decisions? 

Intelligent: complex decisions in uncertain environments 
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Need ability to say “I don’t know!” 



What else do we want from decisions? 

Intelligent: complex decisions in uncertain environments 
 

Robust: handle complex noise, failures, unforeseen inputs 
 

Explainable: ability to explain non-obvious decisions 

 

 



RISELab goal 

Develop open source platforms, tools, and algorithms 

for intelligent real-time decisions on live-data  



Some research directions 

Secure Real-time Decisions Stack (SRDS)  
• Open source platform to develop of RISE like apps 

• Reinforcement Learning (RL) as one of key app patterns 

• Secure from ground up 

 
Learning control hierarchies: speedup learning, training 

 
Shared learning: learn over confidential data 
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SRDS: Microkernel 
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Minimalist execution engine: 
•  Support both data flow and task-parallel execution models 

•  High-throughput, low-latency scheduler 



SRDS: Ground 
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Central repository for models, APIs to capture the context in 
which data gets used and produced 



SRDS: Time machine 
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Replaying of apps at fine granularity 

•  Simplify development, debugging 

•  Robustness: replay against perturbed inputs 

•  Explainability: identify inputs causing decision 

•  Security: confirm vulnerabilities, test security 

patches, compliance auditing 



SRDS: Application frameworks 
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Computation frameworks to simplify development of RISE apps 
•  Ray: task-parallel framework to support RL workloads 

•  Clipper: model serving supporting ensembles & cascading models  

•  Fluent: fine grained data flow execution framework 

•  Opaque: secure SparkSQL 
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Ray 

Targets Reinforcement Learning (RL) applications 

Currently includes μkernel functionality 
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RL requirements 

Process inputs from different sensors in parallel & real-time 
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RL requirements 

Process inputs from different sensor in parallel & real-time 

Execute large number of rollouts (simulations) 

Rollouts outcomes are used to update policy (e.g., SGD) 

• Heterogeneous durations, dynamic execution graph 

• 100s millions of rollouts, each rollout as little as a few msec 



RL requirements 

Process inputs from different sensor in parallel & real-time 

Execute large number of rollouts (simulations) 

Rollouts outcomes are used to update policy (e.g., SGD) 

Often policies implemented by DNNs 
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Ray goals 

Flexibility 
•  Combine neural networks, planning, search, simulation, etc 

• Heterogeneous tasks: CPUs/GPUs, durations, computation  

•  Fine-grained data and task dependencies, dynamic execution 

Performance 
• Millions of tasks per second with msec level latencies 

•  Adapt to changing work in real-time 

Easy of use 
• Minimal changes to parallelize existing Python serial code 

 

 



Ray architecture 

Centralized control store 
•  Stateless components 

In-memory object store 
•  Leverage Arrow 

Dist. scheduling 

Prototype  
•  Python bindings 

•  C/C++ backend  

 29 



Example: Asynchronous RL with Ray 
@ray.remote	

def	simulation(policy):	

		trajectory	=	[]	

		state	=	simulator.initialize()	

		for	i	in	range(T):	

				action	=	policy.compute(state)	

				state,	reward	=	simulator.step(action)	

				trajectory.append((state,	reward))	

		return	trajectory	

actions

state, reward
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Example: Learning to run 
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VW	

Clipper 
(serving & inference system) 

Flexibility 
•  Uniform interface across models 
•  Model life cycle management 

Performance 
•  Prediction caching 
•  Ensembles, cascading models 
•  Control latency-accuracy tradeoff 



Some research directions 

Secure Real-time Decisions Stack (SRDS)  
• Open source platform to develop of RISE like apps 

• Reinforcement Learning (RL) as one of key app patterns 

• Secure from ground up 

 
Learning control hierarchies: speedup learning, training 
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Learning control hierarchies 
Many apps consists of a sequence of decisions/actions, e.g., 

• Driving : turn wheel, step on gas or break, signal 

Challenge: huge state and action spaces 

• Expensive to learn and train  

Approach: indentify sequence of actions, called options, e.g., 

• Driving: change lines  



Learning control hierarchies 
Many apps consists of a sequence of decisions/actions, e.g., 

• Driving : turn wheel, step on gas or break, signal 

Challenge: huge solution space 

• Expensive to learn and train  

Approach: indentify sequence of actions, called options, e.g., 

• Driving: change lines 

• Advantage: reduce dramatically action space 

– Faster learning and generalization 

• Most prior methods require human design, few end-to-end 

• Our research: learn hierarchies of options automatically 



Discovery Deep Options (DDO) 

Compute gradients with respect to policy parameters 
Decouple levels and avoid joint training 
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Example: Four room maze example  
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Results: Atari RAM 



Results: SeaQuest RAM 



Some research directions 
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Shared Learning 
Every cloud provider wants to provide ML as a Service (MLaaS) 

Every enterprise wants to get quality prediction on its data 

Many enterprises wants to keep their data confidential 

Every cloud provider wants to learn across customers’ data to improve pred. 

ML as a Service 
(training &  

prediction) 

Cloud provider 



Shared Learning 
Every cloud provider wants to provide ML as a Service (MLaaS) 

Every enterprise wants to get quality prediction on its data 

Many enterprises wants to keep their data confidential 

Every cloud provider wants to learn across customers’ data to improve pred. 

ML as a Service 
(training &  

prediction) 

Confidential 
Data 

Enterprise customer 

Prediction? 

Cloud provider 



Shared Learning 
Every cloud provider wants to provide ML as a Service (MLaaS) 

Every enterprise wants to get quality prediction on its data 

Many enterprises wants to keep their data confidential 

Every cloud provider wants to learn across customers’ data to improve pred. 

ML as a Service 
(training &  

prediction) 

Confidential 
Data 

Enterprise customer 

Prediction? 

Cloud provider 



Shared Learning 
Every cloud provider wants to provide ML as a Service (MLaaS) 

Every enterprise wants to get quality prediction on its data 

Many enterprises wants to keep their data confidential 

Every cloud provider wants to learn across customers’ data to improve pred. 

ML as a Service 
(training &  

prediction) 

Confidential 
Data 

Enterprise customers 

Prediction? 

Cloud provider 



Shared Learning 
Every cloud provider wants to provide ML as a Service (MLaaS) 

Every enterprise wants to get quality prediction on its data 

Many enterprises wants to keep their data confidential 

Every cloud provider wants to learn across customers’ data to improve pred. 

ML as a Service 
(training &  

prediction) 

Confidential 
Data 

Enterprise customers 

Prediction? 

data* 

prediction 
? 

How can cloud providers learn across customers and perform  
predictions while preserving customer’s data confidentiality? 

Cloud provider 



Shared Learning 
Every cloud provider wants to provide ML as a Service (MLaaS) 

Every enterprise wants to get quality prediction on its data 

Many enterprises wants to keep their data confidential 

Every cloud provider wants to learn across customers’ data to improve pred. 

ML as a Service 
(training &  

prediction) 

Confidential 
Data 

Enterprise customers 

Prediction? 

data* 

prediction 
? 

How can cloud providers incentivize organizations to share data? 
 

Cloud provider 



RISELab goal 

Many exciting challenges in ML/AI, systems, security, 

architectures 

Develop open source platforms, tools and algorithms 
for real-time decisions on live data with strong security 



Thanks! 


