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General Purpose Processor Performance Trends

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Graph from 42 Years of Microprocessor Trend Data, Karl Rupp, CC-BY 4.0.

Single-core
performance
plateauing
after
decades of
exponential
growth



https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Just when deep learning is creating insatiable
computation demands

Training powerful models that are computationally-expensive on:
e Terabyte or petabyte-sized training datasets

Plus techniques like AutoML (“Learning to learn”, Neural Architecture
Search, etc.) can multiply desired training computation by 5-1000X

Inference using expensive deep models in systems with:

e hundreds of thousands of requests per second
e latency requirements of tens of milliseconds
e billions of users



2008: U.S. National Academy of Engineering publishes

Grand Engineering Challenges for 21st Century

e Make solar energy affordable

e Provide energy from fusion

e Develop carbon sequestration methods
e Manage the nitrogen cycle

e Provide access to clean water

e Restore & improve urban infrastructure

e Advance health informatics

www.engineeringchallenges.org/challenges.aspx

Engineer better medicines
Reverse-engineer the brain
Prevent nuclear terror

Secure cyberspace

Enhance virtual reality
Advance personalized learning

Engineer the tools for scientific
discovery

5


http://www.engineeringchallenges.org/challenges.aspx

Restore & improve urban infrastructure



3 million miles

self-driven

We drive more than 25,000 autonomous
miles each week, largely on complex city
streets. That’s on top of 1 billion
simulated miles we drove just in 2016.

https://waymo.com/tech/


https://waymo.com/tech/

Advance health informatics






J AMA The Journal of the

American Medical Association

JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs

n = 9,963 images

100 AUC 99.1% [98.8, 99.3]
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“The study by Gulshan and colleagues truly
represents the brave new world in
medicine.”

“Google just published this paper in JAMA
(impact factor 37) [...] It actually lives up to
the hype.”



https://en.wikipedia.org/wiki/F1_score

Completely new, novel scientific discoveries

Predicting things that doctors can't
predict from imaging

Potential as a new biomarker

Preliminary 5-yr MACE AUC: 0.7

Age: MAE 3.26 yrs Gender: AUC 0.97

Can we predict cardiovascular
risk? If so, this is a very nice
non-invasive way of doing so

Can we also predict treatment
response?

HbA1c: MAE 1.4% Systolic: MAE 11.23 Diastolic: MAE 6.39

R. Poplin, A. Varadarajan et al. Predicting Cardiovascular Risk Factors from Retinal
Fundus Photographs using Deep Learning. Nature Biomedical Engineering, 2018.



Predictive tasks for healthcare

Given a patient’s electronic medical record data, can we predict the future?

Deep learning methods for sequential prediction are becoming extremely good
e.g. recent improvements in Google Translation



Neural Machine Translation

B ettt perfect translation

1SN

neural (GNMT)
phrase-based (PBMT)

N

Closes gap between old system
and human-quality translation
by 58% to 87%

Translation quality
w

—

o

English English English Spanish French Chinese

> > > > > > ° °
Spanish French Chinese English English  English Enables better communication
across the world

Translation model

research.googleblog.com/2016/09/a-neural-network-for-machine.html



https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Predictive tasks for healthcare

Given a large corpus of training data of de-identified medical records, can we
predict interesting aspects of the future for a patient not in the training set?

e will patient be readmitted to hospital in next N days?

e what is the likely length of hospital stay for patient checking in? T

e what are the most likely diagnoses for the patient right now? and why?
e what medications should a doctor consider prescribing?

e what tests should be considered for this patient? l

e Wwhich patients are at highest risk for X in next month?

Collaborating with several healthcare organizations, including UCSF, Stanford, and
Univ. of Chicago.



Medical Records Prediction Results

Scalable and accurate deep learning for electronic health
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https://arxiv.org/abs/1801.07860

Engineer better medicines
and maybe...
Make solar energy affordable
Develop carbon sequestration methods
Manage the nitrogen cycle



Predicting Properties of Molecules

9

~ 103 seconds




Predicting Properties of Molecules
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~ 1072 seconds



Predicting Properties of Molecules
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~ 1072 seconds

e State of the art results predicting output of expensive quantum chemistry
calculations, but ~300,000 times faster

https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html and
https://arxiv.org/abs/1702.05532 and https://arxiv.org/abs/1704.01212 (latter to appear in ICML 2017)

—

seconds



https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html
https://arxiv.org/abs/1702.05532
https://arxiv.org/abs/1704.01212

Reverse engineer the brain



, Connectomics: Reconstructing Neural Circuits from
High-Resolution Brain Imaging

Google



Automated Reconstruction Progress at Google

108 & primates
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Metric: Expected Run Length (ERL)
Google “mean microns between failure” of automated neuron tracing



New Technology: Flood Filling Networks

Flood-Filling Networks 2d Inference
0 50 100 150
Michat Januszewski Jeremy Maitin-Shepard Peter Li
Google Google Google
mjanusz@google.com Jjbms@google.com phli@google.com
Jorgen Kornfeld Winfried Denk
Max Planck Institute for Neurobiology Max Planck Institute for Neurobiology
kornfeld@neuro.mpg.de winfried.denk@neuro.mpg.de
Viren Jain
Google

viren@google.com

e Start with a seed point

e Recurrent neural network iteratively
fills out an object based on image
content and its own previous

Google predictions https://arxiv.org/abs/1611.00421



https://arxiv.org/abs/1611.00421

——Flood Filling Networks: 3d Inference_



Flood Filling Networks: 3d Inference

Google



Songbird Brain Wiring Diagram

e Raw data produced by Max Planck
Institute for Neurobiology using serial
block face scanning electron
microscopy

e 10,600 x 10,800 x 5,700 voxels =
~600 billion voxels

e Goal: Reconstruct complete
connectivity and use to test specific
hypotheses related to how biological
nervous systems produce precise,
sequential motor behaviors and perform Courtesy Jorgen Kornfeld & Winfried Denk, MPI
reinforcement learning.

Google



Engineer the Tools of Scientific Discovery



fTensorFIow

http://tensorflow.org/

and

https://qgithub.com/tensorflow/tensorflow

Open, standard software for
general machine learning

Great for Deep Learning in

particular
First released Nov 2015

Apache 2.0 license



http://tensorflow.org/
https://github.com/tensorflow/tensorflow
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Machine Learning for Finding Planets

Google



www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth- ircling-distant-star

Blog: www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenburg], www.cfa.harvard.edu/~avanderb/kepler90i.pdf



https://www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
https://www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
https://www.cfa.harvard.edu/~avanderb/kepler90i.pdf

IDENTIFYING EXOPLANETS WITH DEEP LEARNING: A FIVE PLANET RESONANT CHAIN
AROUND KEPLER-80 AND AN EIGHTH PLANET AROUND KEPLER-90

CHRISTOPHER J. SHALLUE' ! & ANDREW VANDERBURG* 2%

www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star

Blog: www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenburg], www.cfa.harvard.edu/~avanderb/kepler90i.pdf



https://www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
https://www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
https://www.cfa.harvard.edu/~avanderb/kepler90i.pdf

IDENTIFYING EXOPLANETS WITH DEEP LEARNING: A FIVE PLANET RESONANT CHAIN
AROUND KEPLER-80 AND AN EIGHTH PLANET AROUND KEPLER-90

CHRISTOPHER J. SHALLUE' ! & ANDREW VANDERBURG* 2%

www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star

Blog: www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenburg], www.cfa.harvard.edu/~avanderb/kepler90i.pdf



https://www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
https://www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
https://www.cfa.harvard.edu/~avanderb/kepler90i.pdf
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https://www.blog.google/topics/machine-learning/using-tensorflow-keep-farmers-happy-and-cows-healthy/
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https://www.blog.google/topics/machine-learning/fight-against-illegal-deforestation-tensorflow/



https://www.blog.google/topics/machine-learning/fight-against-illegal-deforestation-tensorflow/

AutoML: Automated machine learning
(“learning to learn”)



Current:
Solution = ML expertise + data + computation



Current:
Solution = ML expertise + data + computation

Can we turn this into:
Solution = data + 100X computation

27?77



Neural Architecture Search

Sample architecture A
with probability p

[ )

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

| J

Compute gradient of p and
scale it by R to update
the controller

Idea: model-generating model trained via reinforcement learning
(1) Generate ten models
(2) Train them for a few hours
(3) Use loss of the generated models as reinforcement learning signal

Neural Architecture Search with Reinforcement Learning, Zoph & Le, ICLR 2016
arxiv.org/abs/1611.01578



Neural Architecture Search to find a model

Controller: proposes ML models Train & evaluate models

Iterate to
find the
most
accurate
model
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AutoML outperforms handcrafted models
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Learning Transferable Architectures for Scalable Image Recognition, Zoph et al. 2017,
https://arxiv.org/abs/1707.07012
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AutoML outperforms handcrafted models
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AutoML outperforms handcrafted models
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AutoML outperforms handcrafted models
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AutoML outperforms handcrafted models
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) Google Cloud Platform Q  Search CONSOLE }

Why Google Products Solutions Launcher Pricing Customers Documentation Support Partners CONTACT S

CLOUD AUTOML "™

Train high quality custom machine learning models with minimum effort and machine learning expertise

{) REQUEST ACCESS

Train Custom Machine Learning Models

Cloud AutoML is a suite of Machine Learning products that enables developers with limited machine learning R

expertise to train high quality models by leveraging Google’s state of the art transfer learning, and Neural

Architecture Search technology. p -}

= I - e
AutoML Vision is the first product to be released. It is a simple, secure and flexible ML service that lets you
| ey ’ | e iI= Ix = I
train custom vision models for your own use cases. Soon, Cloud AutoML will release other services for all

other major fields of Al.

https://cloud.google.com/automl/



https://cloud.google.com/automl/

More computational power needed

Deep learning is transforming how we
design computers



Special computation properties

educed about 1.2 1.210
precision xabout0.6 NOT X 127
ok

about 0.7 0. /598933



Special computation properties

educed about 1.2 1.210
precision xabout0.6 NOT X 127
ok
about 0.7 0./5398933
handful of N
specific —

operations




Tensor Processing Unit v2
| N L A
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Google-designed device for neural net training and inference



Tensor Processing Unit v2
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Google-designed device for neural net training and inference



TPUV2 Chip

e 16 GB of HBM

e 600 GB/s mem BW

e Scalar/vector units:
32b float

o MXU: 32b float
accumulation but
reduced precision for
multipliers

e 45 TFLOPS

HBM
8 GB

core

core

scalar/vector
units

scalar/vector
units

v}

v}

MXU
128x128

MXU
128x128

HBM
8 GB




Tensor Processing Unit v2
LS & - ‘ /4 4

90 | 90060 |piCH

4

180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem BW
Designed to be connected together into larger configurations
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Programmed via TensorFlow

Same program will run w/only minor modifications on CPUs, GPUs, & TPUs

Same program scales via synchronous data parallelism without modification
on TPU pods




Accelerated Linear Algebra (XLA)

JIT / AOT compiler for linear algebra

Targets multiple backends, e.g. CPUs, GPUs, and TPUs
Compiler, runtime, and accelerator-specific optimizer
Compiler plus CPU and GPU backends open-sourced
as part of TensorFlow

The life of a neural network:

p‘F

model.py

TF Estimator code TF Graph

qithub.com/tensorflow/tensorflow/tree/master/tensorflow/compiler



https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler

Accelerated Linear Algebra (XLA)

JIT / AOT compiler for linear algebra
Targets multiple backends, e.g. CPUs, GPUs, and TPUs
Compiler, runtime, and accelerator-specific optimizer
Compiler plus CPU and GPU backends open-sourced
as part of TensorFlow

The life of a neural network:

./,-{\/ Fadierrz LT
lrL'" XLA XLA
e Cern) Target-independent Target-specific
e o e | optimizations code generation
model.py s
TF Estimator code TF Graph

qithub.com/tensorflow/tensorflow/tree/master/tensorflow/compiler



https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler

. > Google Cloud Platform Blog

Cloud TPU machine learning accelerators now available in

beta
Monday, February 12, 2018

Cloud TPU - host w/180 TFLOPS TPUv2 device attached

cloudplatform.googleblog.com/2018/02/Cloud-TPU-machine-learning-accelerators-now-available-in-beta.html



https://cloudplatform.googleblog.com/2018/02/Cloud-TPU-machine-learning-accelerators-now-available-in-beta.html

‘ } Google Cloud Platform Blog

Cloud TPU machine learning accelerators now available in

beta
Monday, February 12, 2018

Cloud TPU - host w/180 TFLOPS TPUv2 device attached

“Since working with Google Cloud TPUs, we’ve been extremely impressed with their
speed—what could normally take days can now take hours.”
— Anantha Kancherla, Head of Software, Self-Driving Level 5, Lyft

“We found that moving TensorFlow workloads to TPUs has boosted our productivity by
greatly reducing both the complexity of programming new models and the time required to

train them."
— Alfred Spector, Chief Technology Officer, Two Sigma

cloudplatform.googleblog.com/2018/02/Cloud-TPU-machine-learning-accelerators-now-available-in-beta.html



https://cloudplatform.googleblog.com/2018/02/Cloud-TPU-machine-learning-accelerators-now-available-in-beta.html

TPUs run a wide & growing variety of open-source reference models

e Image Classification
o ResNet 50/101/152/200, Inception v2/v3/v4, MobileNet, SqueezeNet, DenseNet
e Object Detection
o RetinaNet
e Machine translation, language modeling, sentiment analysis
o Transformer
Coming soon:
e AmoebaNet that achieves 80% top-1 ImageNet validation accuracy
o Architecture discovered through evolutionary search on TPU (arxiv.org/abs/1802.01548)
e Transformer-Based Speech Recognition
o Preview in Tensor2Tensor today
e DeepVariant
o High-accuracy variant calling for genomic sequencing
e Transformer-Based Image Generation

https://qgithub.com/tensorflow/tpu/



https://arxiv.org/abs/1802.01548
https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tpu/

Some TPU Success Stories

Internal search ranking model training:
14.2X: ~9 hours on 1/4 pod vs. ~132 hours on 275 high end CPU machines

Internal image model training:
9.8X: ~22 hours on 1/4 pod vs. ~216 hours on previous production setup

WaveNet production model inference:
Generates speech at 20X real time



Some TPU Success Stories (December 2017)

Resnet-50 to >76% accuracy:
1402 minutes on single TPUv2 device
45 minutes on 1/2 pod (32 TPUv2 devices)

same code,
Resnet-50 to 75% accuracy: no special tricks
22 minutes on full pod (64 TPUv2 devices)



Some TPU Success Stories (today)

Resnet-50 to >76% accuracy:
4402 785 minutes on single TPUv2 device
45 24.5 minutes on 1/2 pod (32 TPUv2 devices)
same code,
Resnet-50 to 75% accuracy: no special tricks
22 12.2 minutes on full pod (64 TPUv2 devices)



Some TPU Success Stories (today)

Resnet-50 to >76% accuracy:
4402 785 minutes on single TPUv2 device
45 24.5 minutes on 1/2 pod (32 TPUv2 devices)
same code,
Resnet-50 to 75% accuracy: no special tricks
22 12.2 minutes on full pod (64 TPUv2 devices)

\ ImageNet training epoch (1.2M images) every ~8 seconds



TPU Scaling for ResNet-50 (December 2017)

90000 Speed-up curve measured by images per second
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TPU Scaling for ResNet-50 (today)

Images per second
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More than just ImageNet

Transformer model from "Attention is
All You Need"
(2017 A. Vaswani et. al., NIPS 2017)

WMT’14 English-German translation
task

Adam optimizer - same learning rate
schedule across configurations

6.5

Per-Token Perplexity
o
(&)

o
(=
T

o
(=

SE RN

batch size
(/o tokens)

16k / 16k
32k / 32k

256k / 256k

1M/ 1M

# TPUs Time to

1

4

PPL=4.8

17.9 hours
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1.1 hours

0.5 hours

10
Hours

15
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TensorFlow

RESEARCH CLOUD

1000 Cloud TPUs available for free to top researchers who are committed to
open machine learning research

We’'re excited to see what researchers will do with much more computation!
TFRC signup: g.co/tpusignup



http://g.co/tpusignup

What should we build in future ML
accelerators?



ML Arxiv Papers

ML Arxiv Papers per Year

20,000 = ML-Arxiv-Papers— @ Moore's- Law—
15,000
10,000

5,000

2009 2011 2013 2015

Year

2017

Relative Number of ML Arxiv Papers to 2009



If you start an ASIC machine learning accelerator
design today, ...

Starts to get deployed into production in ~2 years
Must remain relevant through ~5 years from now

Can We See The Future Clearly Enough?
What should we bet on?



Some Example Questions

Precision:
Will very-low precision training (1-4 bit weights, 1-4 bit activations)
work in general across all problems we care about?

Sparsity and embeddings: How should we handle:
Dynamic routing like the sparsely-gated Mixture of Experts work (icLrR'17)
Very large embeddings for some problems (e.g. 1B items x 1000D)

Batch size:
Should we build machines for very large batch sizes? Or batch size 1?

Training algorithms:
Will SGD-like algorithms remain the dominant training paradigm?
Or will large-batch second-order methods like K-FAC be better?



Machine Learning for Systems



Learning Should Be Used Throughout our
Computing Systems

Traditional low-level systems code (operating systems,
compilers, storage systems) does not make extensive use of

machine learning today
This should change!

A few examples and some opportunities...



Machine Learning for
Higher Performance Machine Learning
Models



For large models, model parallelism is important



For large models, model parallelism is important

But getting good performance given multiple
computing devices is non-trivial and non-obvious
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Reinforcement Learning for
Higher Performance Machine Learning Models

Placement _ Environment —_— > Runtime

Update
Placement

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972



https://arxiv.org/abs/1706.04972

Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model
(trained via RL) gets
graph as input + set
of devices, outputs
device placement for
each graph node

Placement 3 Envionment ————» Runtime

Update
Placement

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,

Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972



https://arxiv.org/abs/1706.04972

Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model — — Measured time
. . _ > 1 b .
(trained via RL) gets EOVEER per step gives

graph as input + set RL reward signal
of devices, outputs
device placement for
each graph node

Update
Placement

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,

Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972



https://arxiv.org/abs/1706.04972

Device Placement with Reinforcement Learning

Placement model (trained
via RL) gets graph as input
+ set of devices, outputs
device placement for each
graph node

Placement

Environment

L 5 Runtime

Update
Placement

Measured time
per step gives
RL reward signal

Figure 4. RL-based placement of Neural MT graph. Above: encoder, Below: decoder. Devices are denoted by colors, where the
transparent color represents an operation on a CPU and each other unique color represents a different GPU. This placement achieves an
improvement of 19.3% in running time compared to the fine-tuned hand-crafted placement.

+19.3% faster vs. expert human for neural

translation model

compared to expert-designed placement.

Device Placement Optimization with Reinforcement Learning,

Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

Figure 5. RL-based placement of Inception-V3. Devices are denoted by colors, where the transparent color represents an operation on a
CPU and each other unique color represents a different GPU. RL-based placement achieves the improvement of 19.7% in running time

+19.7% faster vs. expert human for InceptionV3

image model



https://arxiv.org/abs/1706.04972

A Hierarchical Model for Device Placement
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A Hierarchical Model for Device Placement,
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean, to appear in ICLR 2018,

openreview.net/forum?id=Hkc-TeZ0W



https://openreview.net/forum?id=Hkc-TeZ0W

A Hierarchical Model for Device Placement
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Figure 2: The Hierarchical Planner’s placement of a NMT (4-layer) model. White denotes CPU and
the four colors each represent one of the GPUs. Note that every step of every layer is allocated across
multiple GPUs. This placement is 53.7% faster than that generated by a human expert.

+53.7% faster vs. expert human for neural machine translation model

A Hierarchical Model for Device Placement,
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean, to appear in ICLR 2018,
openreview.net/forum?id=Hkc-TeZ0W



https://openreview.net/forum?id=Hkc-TeZ0W

Learned Index Structures
NOt
Conventional Index Structures



B-Trees are Models

(a) B-Tree Index (b) Learned Index

7 I
Model
(e.g., NN)
BTree
POsS X pos
pos -0 pos + pagezise pos - min_err pos + max_er

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208


https://arxiv.org/abs/1712.01208

Indices as CDFs

Pos A

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208


https://arxiv.org/abs/1712.01208

Does it Work? '

Model 1.1

Stage 1

% Model 2.1 Model 2.2 Model 2.3

. W . e o S et S

g’ Model 3.1 Model 3.2 Model 3.3 Model 3.4
Index of 200M web service log records : ==

Type Config Lookup time | Speedup vs. Btree | Size (MB) | Size vs. Btree

BTree page size: 128 260 ns 1.0X | 12.98 MB 1.0X
Learned index | 2nd stage size: 10000 222 ns 1.17X | 0.15MB 0.01X
Learned index | 2nd stage size: 50000 162 ns 1.60X | 0.76 MB 0.05X
Learned index | 2nd stage size: 100000 144 ns 1.67X | 1.53 MB 0.12X
Learned index | 2nd stage size: 200000 126 ns 2.06X | 3.05MB 0.23X

60% faster at 1/20th the space, or 17% faster at 1/100th the space
The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208


https://arxiv.org/abs/1712.01208

Hash Tables

Dataset | Slots | Hash Type Search | Empty Slots Space
B Time (ns) Improvement
(a) Traditional Hash-Map
Map 75% | Model Hash 67 0.63GB (05%) -20%|
& ' Random Hash| 52 0.80GB (25%)
. e o 100% |Model Hash 53 1.10GB (08%) -27%|
Random Hash 48 1.50GB (35%)
Key : Hash- > ] 125%|Model Hash 64 2.16GB (26%) -6%)]
FUncicn . o . Random Hash| 49 2.31GB (43%)
e % . Web Log| 75%|Model Hash 78 0.18GB (19%) | -78%
g |
Random Hash 53 0.84GB (25%) 7
100%|Model Hash 63 0.35GB (25%) | -78%
(b) Learned Hash-Map Random Hash 50 1.58GB (35%)
e ) 125%|Model Hash 77 1.47GB (40%) -39%]
Random Hash 50 2.43GB (43%)
> e : Log 75%|Model Hash 79 0.63GB (20%) -22%)|
Kiip Normal Random Hash 52 0.80GB (25%)
—»| Model 100%|Model Hash 66 1.10GB (26%) -30%|
Random Hash 46 1.50GB (35%)
p— 125%|Model Hash 77 2.16GB (41%) -9%]|
Random Hash 46 2.31GB (44%)

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208


https://arxiv.org/abs/1712.01208

(a) Bloom-Filter Insertion

Bloom Filters

(%]

—— Bloom Filter

W=128,E=32
—— W=32,E=32
— W=16,E=32

IS
|

w

N

(b) Learned Bloom-Filter Insertion
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Model is simple RNN
W is number of units in RNN layer
E is width of character embedding

~36% space improvement over
Bloom Filter at same false positive rate

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208


https://arxiv.org/abs/1712.01208

Where Else Could We Use Learning?



Computer Systems are Filled With Heuristics

Compilers, Networking code, Operating Systems, ...
Heuristics have to work well “in general case”
Generally don't adapt to actual pattern of usage

Generally don’t take into account available context



Anywhere We're Using Heuristics To Make a

Decision! , , , ,
Compilers: instruction scheduling, register allocation, loop

nest parallelization strategies, ...

Networking: TCP window size decisions, backoff for
retransmits, data compression, ...

Operating systems: process scheduling, buffer cache
insertion/replacement, file system prefetching, ...

Job scheduling systems: which tasks/VMs to co-locate on
same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, ...



Anywhere We've Punted to a User-Tunable
Performance Option!

Many programs have huge numbers of tunable command-line
flags, usually not changed from their defaults

—-—eventmanager threads=16

-—bigtable scheduler batch size=8
-—-mapreduce merge memory=134217728
—-—lexicon cache s1ze=1048576

-—storage server rpc freelist size=128



Meta-learn everything
ML.

learning placement decisions

learning fast kernel implementations

learning optimization update rules

learning input preprocessing pipeline steps

learning activation functions

learning model architectures for specific device types, or that are fast
for inference on mobile device X, learning which pre-trained
components to reusse, ...

Computer architecture/datacenter networking design:

e |earning best design properties by exploring design space
automatically (via simulator)



Keys for Success in These Settings

(1) Having a numeric metric to measure and optimize
(2) Having a clean interface to easily integrate learning into
all of these kinds of systems

Current work: exploring APls and implementations
Basic ideas:
Make a sequence of choices in some context
Eventually get feedback about those choices
Make this all work with very low overhead, even in
distributed settings
Support many implementations of core interfaces



Conclusions

ML hardware is at its infancy. Learning in the core of all of our
Even faster systems and wider computer systems will make
deployment will lead to many them better/more adaptive.
more breakthroughs across a There are many opportunities for
wide range of domains. this.

L v S - _
i S . = < pos - min_err pos + max_er

More info about our work at g.co/brain


http://g.co/brain

