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Systems for Machine Learning



General Purpose Processor Performance Trends

Graph from 42 Years of Microprocessor Trend Data, Karl Rupp, CC-BY 4.0.

Single-core 
performance 
plateauing 
after 
decades of 
exponential 
growth

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Just when deep learning is creating insatiable 
computation demands
Training powerful models that are computationally-expensive on:

● Terabyte or petabyte-sized training datasets

Plus techniques like AutoML (“Learning to learn”, Neural Architecture 
Search, etc.) can multiply desired training computation by 5-1000X

Inference using expensive deep models in systems with:

● hundreds of thousands of requests per second
● latency requirements of tens of milliseconds
● billions of users



2008: U.S. National Academy of Engineering publishes

Grand Engineering Challenges for 21st Century
● Make solar energy affordable

● Provide energy from fusion

● Develop carbon sequestration methods

● Manage the nitrogen cycle

● Provide access to clean water

● Restore & improve urban infrastructure

● Advance health informatics

● Engineer better medicines

● Reverse-engineer the brain

● Prevent nuclear terror

● Secure cyberspace

● Enhance virtual reality

● Advance personalized learning

● Engineer the tools for scientific
discovery

www.engineeringchallenges.org/challenges.aspx

http://www.engineeringchallenges.org/challenges.aspx
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Restore & improve urban infrastructure



https://waymo.com/tech/

https://waymo.com/tech/
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Advance health informatics



Healthy Diseased

Hemorrhages

No DR Mild DR Moderate DR Severe DR Proliferative DR

1 2 3 4 5



0.95
F-score

Algorithm Ophthalmologist 
(median)

0.91

“The study by Gulshan and colleagues truly 
represents the brave new world in 

medicine.”

“Google just published this paper in JAMA 
(impact factor 37) [...] It actually lives up to 

the hype.”

Dr. Andrew  Beam, Dr. Isaac Kohane 
Harvard Medical School

Dr. Luke Oakden-Rayner 
University of Adelaide

https://en.wikipedia.org/wiki/F1_score


Age: MAE 3.26 yrs Gender: AUC 0.97

Diastolic: MAE 6.39 
mmHg

Systolic: MAE 11.23 
mmHg

HbA1c: MAE 1.4%

Can we predict cardiovascular 
risk?  If so, this is a very nice 
non-invasive way of doing so

Can we also predict treatment 
response?

R. Poplin, A. Varadarajan et al. Predicting​ ​Cardiovascular​ ​Risk​ ​Factors​ ​from​ ​Retinal 
Fundus​ ​Photographs​ ​using​ ​Deep​ ​Learning. Nature Biomedical Engineering, 2018.

Completely new, novel scientific discoveries



Predictive tasks for healthcare
Given a patient’s electronic medical record data, can we predict the future?

Deep learning methods for sequential prediction are becoming extremely good
e.g. recent improvements in Google Translation
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Neural Machine Translation

Closes gap between old system 
and human-quality translation 
by 58% to 87%

Enables better communication 
across the world

research.googleblog.com/2016/09/a-neural-network-for-machine.html

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html


Predictive tasks for healthcare
Given a large corpus of training data of de-identified medical records, can we 
predict interesting aspects of the future for a patient not in the training set?

● will patient be readmitted to hospital in next N days?
● what is the likely length of hospital stay for patient checking in?
● what are the most likely diagnoses for the patient right now?            and why?
● what medications should a doctor consider prescribing?
● what tests should be considered for this patient?
● which patients are at highest risk for X in next month?

Collaborating with several healthcare organizations, including UCSF, Stanford, and 
Univ. of Chicago.



Medical Records Prediction Results

24 hours earlier

https://arxiv.org/abs/1801.07860

https://arxiv.org/abs/1801.07860
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Engineer better medicines
and maybe... 

Make solar energy affordable
Develop carbon sequestration methods

Manage the nitrogen cycle



Predicting Properties of Molecules
Toxic?

Bind with a given protein?

Quantum properties: E,ω0, ...

DFT (density 
functional 

theory) 
simulator
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Predicting Properties of Molecules
Toxic?

Bind with a given protein?

Quantum properties: E,ω0, ...

https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html and 
https://arxiv.org/abs/1702.05532 and https://arxiv.org/abs/1704.01212 (latter to appear in ICML 2017)

● State of the art results predicting output of expensive quantum chemistry 
calculations, but ~300,000 times faster

DFT (density 
functional 

theory) 
simulator

https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html
https://arxiv.org/abs/1702.05532
https://arxiv.org/abs/1704.01212
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Reverse engineer the brain



Connectomics: Reconstructing Neural Circuits from 
High-Resolution Brain Imaging



mouse cortex (AIBS)
fly (HHMI)

whole mouse brain (MPI)

primates

songbird [100 µm]^3
(MPI)

log scale

Automated Reconstruction Progress at Google

Metric: Expected Run Length (ERL) 
“mean microns between failure” of automated neuron tracing

102

104

106

108
E

xp
ec

te
d 

ru
n 

le
ng

th
 (µ

m
)



● Start with a seed point

● Recurrent neural network iteratively 
fills out an object based on image 
content and its own previous 
predictions   

New Technology: Flood Filling Networks

https://arxiv.org/abs/1611.00421

2d Inference

https://arxiv.org/abs/1611.00421


Flood Filling Networks: 3d Inference



Flood Filling Networks: 3d Inference

~ 100 µm (10,000 voxels)



● Raw data produced by Max Planck 
Institute for Neurobiology using serial 
block face scanning electron 
microscopy

● 10,600 ⨉ 10,800 ⨉ 5,700 voxels = 
~600 billion voxels

● Goal: Reconstruct complete 
connectivity and use to test specific 
hypotheses related to how biological 
nervous systems produce precise, 
sequential motor behaviors and perform 
reinforcement learning.

Courtesy Jorgen Kornfeld & Winfried Denk, MPI

Songbird Brain Wiring Diagram
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Engineer the Tools of Scientific Discovery



Open, standard software for 
general machine learning

Great for Deep Learning in 
particular

First released Nov 2015

Apache 2.0 license

http://tensorflow.org/
and

https://github.com/tensorflow/tensorflow

http://tensorflow.org/
https://github.com/tensorflow/tensorflow
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Machine Learning for Finding Planets



www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
Blog:  www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenburg], www.cfa.harvard.edu/~avanderb/kepler90i.pdf

https://www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
https://www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
https://www.cfa.harvard.edu/~avanderb/kepler90i.pdf


www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
Blog:  www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenburg], www.cfa.harvard.edu/~avanderb/kepler90i.pdf

https://www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
https://www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
https://www.cfa.harvard.edu/~avanderb/kepler90i.pdf


www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
Blog:  www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
Paper: [Shallue & Vandenburg], www.cfa.harvard.edu/~avanderb/kepler90i.pdf

https://www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
https://www.blog.google/topics/machine-learning/hunting-planets-machine-learning/
https://www.cfa.harvard.edu/~avanderb/kepler90i.pdf


Half screen photo slide if 
text is necessary

https://www.blog.google/topics/machine-learning/using-tensorflow-keep-farmers-happy-and-cows-healthy/

https://www.blog.google/topics/machine-learning/using-tensorflow-keep-farmers-happy-and-cows-healthy/


https://www.blog.google/topics/machine-learning/fight-against-illegal-deforestation-tensorflow/

https://www.blog.google/topics/machine-learning/fight-against-illegal-deforestation-tensorflow/
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AutoML: Automated machine learning
(“learning to learn”)



Current:
Solution = ML expertise + data + computation



Current:
Solution = ML expertise + data + computation

Can we turn this into:
Solution = data + 100X computation

???



Idea: model-generating model trained via reinforcement learning
(1) Generate ten models
(2) Train them for a few hours
(3) Use loss of the generated models as reinforcement learning signal

Neural Architecture Search with Reinforcement Learning, Zoph & Le, ICLR 2016
arxiv.org/abs/1611.01578

Neural Architecture Search



Controller: proposes ML models Train & evaluate models

20K

Iterate to 
find the 

most 
accurate 

model





Inception-ResNet-v2

computational cost

A
cc

ur
ac

y 
(p

re
ci

si
on

 @
1)

ac
cu

ra
cy

AutoML outperforms handcrafted models

https://arxiv.org/abs/1707.07012


Inception-ResNet-v2

Years of effort by top ML 
researchers in the world
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https://cloud.google.com/automl/

https://cloud.google.com/automl/
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More computational power needed

Deep learning is transforming how we 
design computers



Special computation properties

reduced
precision

ok

about 1.2

× about 0.6

about 0.7

1.21042

× 0.61127

0.73989343
NOT
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Special computation properties



Tensor Processing Unit v2

Google-designed device for neural net training and inference

Tensor Processing Unit v2

Google-designed device for neural net training and inference



Tensor Processing Unit v2

Google-designed device for neural net training and inference



TPUv2 Chip
core core

HBM
8 GB

HBM
8 GB

scalar/vector 
units

MXU
128x128

MXU
128x128

● 16 GB of HBM
● 600 GB/s mem BW
● Scalar/vector units: 

32b float
● MXU: 32b float 

accumulation but 
reduced precision for 
multipliers

● 45 TFLOPS

scalar/vector 
units



Tensor Processing Unit v2

● 180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem BW
● Designed to be connected together into larger configurations



TPU Pod 
64 2nd-gen TPUs

11.5 petaflops
4 terabytes of HBM memory



Programmed via TensorFlow

Same program will run w/only minor modifications on CPUs, GPUs, & TPUs

Same program scales via synchronous data parallelism without modification 
on TPU pods 



Accelerated Linear Algebra (XLA)
● JIT / AOT compiler for linear algebra
● Targets multiple backends, e.g. CPUs, GPUs, and TPUs
● Compiler, runtime, and accelerator-specific optimizer
● Compiler plus CPU and GPU backends open-sourced

as part of TensorFlow

The life of a neural network:

model.py

TF Estimator code TF Graph

github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler


Accelerated Linear Algebra (XLA)
● JIT / AOT compiler for linear algebra
● Targets multiple backends, e.g. CPUs, GPUs, and TPUs
● Compiler, runtime, and accelerator-specific optimizer
● Compiler plus CPU and GPU backends open-sourced

as part of TensorFlow

The life of a neural network:

model.py

XLA
Target-independent 

optimizations
Target-specific 

code generation

XLA

TF Estimator code TF Graph

github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler


cloudplatform.googleblog.com/2018/02/Cloud-TPU-machine-learning-accelerators-now-available-in-beta.html

Cloud TPU - host w/180 TFLOPS TPUv2 device attached

https://cloudplatform.googleblog.com/2018/02/Cloud-TPU-machine-learning-accelerators-now-available-in-beta.html


cloudplatform.googleblog.com/2018/02/Cloud-TPU-machine-learning-accelerators-now-available-in-beta.html

“Since working with Google Cloud TPUs, we’ve been extremely impressed with their 
speed—what could normally take days can now take hours.”
— Anantha Kancherla, Head of Software, Self-Driving Level 5, Lyft

“We found that moving TensorFlow workloads to TPUs has boosted our productivity by 
greatly reducing both the complexity of programming new models and the time required to 
train them." 
— Alfred Spector, Chief Technology Officer, Two Sigma

Cloud TPU - host w/180 TFLOPS TPUv2 device attached

https://cloudplatform.googleblog.com/2018/02/Cloud-TPU-machine-learning-accelerators-now-available-in-beta.html


TPUs run a wide & growing variety of open-source reference models
● Image Classification

○
● Object Detection

○
● Machine translation, language modeling, sentiment analysis

○

● AmoebaNet that achieves 80% top-1 ImageNet validation accuracy
○

● Transformer-Based Speech Recognition
○

● DeepVariant
○

● Transformer-Based Image Generation

https://github.com/tensorflow/tpu/

https://arxiv.org/abs/1802.01548
https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tpu/


Internal search ranking model training:
14.2X: ~9 hours on 1/4 pod vs. ~132 hours on 275 high end CPU machines 

Internal image model training:
9.8X: ~22 hours on 1/4 pod vs. ~216 hours on previous production setup

WaveNet production model inference:
Generates speech at 20X real time

Some TPU Success Stories



Resnet-50 to >76% accuracy:
1402 minutes on single TPUv2 device
45 minutes on 1/2 pod (32 TPUv2 devices)

Resnet-50 to 75% accuracy:
22 minutes on full pod (64 TPUv2 devices)

Some TPU Success Stories (December 2017)

same code,
no special tricks



Resnet-50 to >76% accuracy:
1402 785 minutes on single TPUv2 device
45 24.5 minutes on 1/2 pod (32 TPUv2 devices)

Resnet-50 to 75% accuracy:
22 12.2 minutes on full pod (64 TPUv2 devices)

Some TPU Success Stories (today)

same code,
no special tricks



Resnet-50 to >76% accuracy:
1402 785 minutes on single TPUv2 device
45 24.5 minutes on 1/2 pod (32 TPUv2 devices)

Resnet-50 to 75% accuracy:
22 12.2 minutes on full pod (64 TPUv2 devices)

Some TPU Success Stories (today)

same code,
no special tricks

ImageNet training epoch (1.2M images) every ~8 seconds



TPU Scaling for ResNet-50 (December 2017)



TPU Scaling for ResNet-50 (today)



More than just ImageNet

Transformer model from "Attention is 
All You Need"
(2017 A. Vaswani et. al.,  NIPS 2017)

WMT’14 English-German translation 
task

Adam optimizer - same learning rate 
schedule across configurations

batch size
(i/o tokens)

16k / 16k

32k / 32k

256k / 256k

1M / 1M

Time to
PPL=4.8

17.9 hours

3.5 hours

1.1 hours

0.5 hours

# TPUs

1

4

16

64



1000 Cloud TPUs available for free to top researchers who are committed to 
open machine learning research

We’re excited to see what researchers will do with much more computation!
TFRC signup: g.co/tpusignup

http://g.co/tpusignup
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What should we build in future ML 
accelerators?



ML Arxiv Papers per Year



If you start an ASIC machine learning accelerator 
design today, ...

Starts to get deployed into production in ~2 years

Must remain relevant through ~5 years from now

Can We See The Future Clearly Enough?
What should we bet on?



Some Example Questions

Precision:
Will very-low precision training (1-4 bit weights, 1-4 bit activations)
work in general across all problems we care about?

Sparsity and embeddings: How should we handle:
Dynamic routing like the sparsely-gated Mixture of Experts work (ICLR’17)

Very large embeddings for some problems (e.g. 1B items x 1000D)

Batch size:
Should we build machines for very large batch sizes?  Or batch size 1?

Training algorithms:
Will SGD-like algorithms remain the dominant training paradigm?
Or will large-batch second-order methods like K-FAC be better?
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Machine Learning for Systems



Learning Should Be Used Throughout our 
Computing Systems

Traditional low-level systems code (operating systems, 
compilers, storage systems) does not make extensive use of 
machine learning today

This should change!

A few examples and some opportunities...
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Machine Learning for
Higher Performance Machine Learning 

Models



For large models, model parallelism is important



For large models, model parallelism is important

But getting good performance given multiple 
computing devices is non-trivial and non-obvious



A B C D _
_ A B C

A B C D

A B C D

LSTM 1

LSTM 2

Attention

Softmax



A B C D _
_ A B C

A B C D

GPU1

GPU2

GPU3

GPU4 A B C D

LSTM 1

LSTM 2

Attention

Softmax



Reinforcement Learning for
Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model 
(trained via RL) gets 
graph as input + set 
of devices, outputs 
device placement for 
each graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Reinforcement Learning for
Higher Performance Machine Learning Models

Measured time 
per step gives 
RL reward signal

Placement model 
(trained via RL) gets 
graph as input + set 
of devices, outputs 
device placement for 
each graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Device Placement with Reinforcement Learning

Measured time 
per step gives 
RL reward signal

Placement model (trained 
via RL) gets graph as input 
+ set of devices, outputs 
device placement for each 
graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3 
image model

+19.3% faster vs. expert human for neural 
translation model

https://arxiv.org/abs/1706.04972


A Hierarchical Model for Device Placement

A Hierarchical Model for Device Placement,
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean, to appear in ICLR 2018, 
openreview.net/forum?id=Hkc-TeZ0W

https://openreview.net/forum?id=Hkc-TeZ0W


A Hierarchical Model for Device Placement

A Hierarchical Model for Device Placement,
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean, to appear in ICLR 2018, 
openreview.net/forum?id=Hkc-TeZ0W

+53.7% faster vs. expert human for neural machine translation  model

https://openreview.net/forum?id=Hkc-TeZ0W
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Learned Index Structures
not

Conventional Index Structures



B-Trees are Models

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Indices as CDFs

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Does it Work?

Type Config Lookup time Speedup vs. Btree Size (MB) Size vs. Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Learned index 2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X

Learned index 2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X

Learned index 2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X

Learned index 2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

Index of 200M web service log records

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

60% faster at 1/20th the space, or 17% faster at 1/100th the space

https://arxiv.org/abs/1712.01208


Hash Tables

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Bloom Filters

Model is simple RNN
W is number of units in RNN layer
E is width of character embedding

~36% space improvement over
Bloom Filter at same false positive rate

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Google Confidential + Proprietary (permission granted  to share within NIST)

Where Else Could We Use Learning?



Computer Systems are Filled With Heuristics

Compilers, Networking code, Operating Systems, …

Heuristics have to work well “in general case”

Generally don’t adapt to actual pattern of usage

Generally don’t take into account available context



Anywhere We’re Using Heuristics To Make a 
Decision!
Compilers: instruction scheduling, register allocation, loop 
nest parallelization strategies, …

Networking: TCP window size decisions, backoff for 
retransmits, data compression, ...

Operating systems: process scheduling, buffer cache 
insertion/replacement, file system prefetching, …

Job scheduling systems: which tasks/VMs to co-locate on 
same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, …



Anywhere We’ve Punted to a User-Tunable 
Performance Option!
Many programs have huge numbers of tunable command-line 
flags, usually not changed from their defaults

--eventmanager_threads=16
--bigtable_scheduler_batch_size=8
--mapreduce_merge_memory=134217728
--lexicon_cache_size=1048576
--storage_server_rpc_freelist_size=128
...



Meta-learn everything
ML:

● learning placement decisions
● learning fast kernel implementations
● learning optimization update rules
● learning input preprocessing pipeline steps
● learning activation functions
● learning model architectures for specific device types, or that are fast 

for inference on mobile device X,  learning which pre-trained 
components to reuse, …

Computer architecture/datacenter networking design:

● learning best design properties by exploring design space 
automatically (via simulator)



Keys for Success in These Settings

(1) Having a numeric metric to measure and optimize
(2) Having a clean interface to easily integrate learning into 

all of these kinds of systems

Current work: exploring APIs and implementations
Basic ideas:

Make a sequence of choices in some context
Eventually get feedback about those choices
Make this all work with very low overhead, even in

distributed settings
Support many implementations of core interfaces



Conclusions
ML hardware is at its infancy.  
Even faster systems and wider 
deployment will lead to many 
more breakthroughs across a 
wide range of domains.

Learning in the core of all of our 
computer systems will make 
them better/more adaptive.  
There are many opportunities for 
this.

More info about our work at g.co/brain 

http://g.co/brain

