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Machine Learning Problems in Biomedicine

CRISPR Decoding the
gene editing immune system

any organism of choice Learning to decode the immune system to diagnose disease
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(aka RNA gUIde) Blood sample Immunosequencing Machine learning Empowered care
QOur immune system is We read every immune We generate a map of the This map of the immune
a very sophisticated cell that stores that immune system by matching system will be used by
diagnostic machine diagnostic information trillions of T cells to the doctors and researchers to

diseases they recognize improve disease diagnosis

DNA to be edited
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Editing humanity
The prospect of genetic enhancement
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Mutation From Genes in Human Embryos
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Editing DNA is now
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Matching the Target

Two problems:

1. Better “on-target” (knocking out the gene of interest):

2. Elimination/reduction of “off-target” effects:
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Matching the Target

TwoO problems:

Solution paths:

* Improving laboratory methods.
* Machine learning.




ML on-target predictive modeling for CRISPR

RNA guide

any organism of choice .

gene edit
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(aka RNA guide)

f(xX)
[xl,xz, ...,XM] S
| DNA to be edited , (%)
[%1, %5, ooy Xpy] | ——) v = not effective

Problem scale: “40M possible guides
20,000 human genes x 10 potential transcripts (RNA) per gene x 200 potential edit locations per transcript
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Improvements in Savings in Cost and
Accuracy Time Per Gene




Strong uptake in biology community

Recommended by independent studies (Haeussler et al. 2016).
Adopted by startups and academics/researchers worldwide.
Azure ML service ~1500 requests/day, doubling every 3 months
Web service ~300 requests/day.

Over 3000 open-source software downloads.

Nature Biotechnology 2016 (320 citations to date)

https://www.microsoft.com/en-us/research/project/crispr/
(Azimuth)



https://www.microsoft.com/en-us/research/project/crispr/

Off-target prediction: Much harder problem

* Need to scan across all 3 billion nucleotides of the genome
» Sparse training data: only measure genes with observable effect
* Combinatorial explosion arising from tolerance of mismatches

* Need to combine into one off-target score for the user

guide/intended target
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Combinatorial explosion (for 1 guide in 1 gene)

1 mismatch: 69 sites 1 full example
2 mismatches: 2277 sites
3 mismatches: 47,817 sites very sparsely

. . : sampled across
4 mismatches: 717,255 sites different genes

5 mismatches: 8,176,707 sites

Combinatorial explosion + Sparse training data => Cleverness needed!




hree step-approach to off-target modeling

Given a guide:

1. Filter genome-wide potential off-targets to assess
(all is too many; reduce to ~2,000 most serious)

2. Score each off-target from (1) for activity using a
machine learning predictive model.

3. Aggregate the scores from (2) into a single overall
off-target score.
Nature Biomedical Engineering 2018

https://www.microsoft.com/en-us/research/project/crispr/ (Elevation)
(or go to Microsoft Al blog and search for “CRISPR”)



https://www.microsoft.com/en-us/research/project/crispr/

2. Score each off-target for activity

machine
learning

Target model .
RNA guide Wisieie Activity
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Off-target: two-step guide-target modelling

i.  Build single-mismatch model. 7,0

f (91:t1)
GGCTGCITMTACCCGCTGTGGG
— 0.77
ACTGGCAGCTATAACCCGTGETGGGACA...
S h(0.77,0.21)
f (g2 t2) — 043
GGCTGCTTTACCACTGTGEGG —p 021
ACTGGCAGCTCTAACAAGTGTGGGACA...



Off-target: two-step guide-target modelling

i.  Build single-mismatch model. 7,0

ii.  Build multi-mismatch model that combines the
output from step (i).  r(f(g, 1), f (G2 5))

f(gll tl)
GGCTGCTITACCCGCTGTGGG
— 0.77
ACTGGCAGCTTAACCCGTGTGGGACA...
GGCTGCTTTACC CTGTGGG T h(0.77,0.21)
ACTGGCAGCTATAACAQGTGTGGGACA... /(g2 t2) EE— 043
GGCTGCTTTACCAQCTGTGGG — 021
>_mismatch example .ACTGGCAGCTCTAACQQGTGTGGGACA..



Evaluation on held out data

 Evaluation depends on
usage scenario

* May want to weight off-
targets differently
depending on their impact

e Our approach (Elevation)
outperforms others, no
matter what the weighting

Performance

80

% improvement in Spearman r over CCTOP
N Ey (o)}
o o (@]

= O
o
V)

*—

Elevation-score

CFD
HsuZhang

s—e CCTOP

10 1073 10~ 10!

» knob of Spearman weights

Has now also been validated as
state-of-the-art on two data sets.
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Problem scale: “80B possible guides

~2000 mismatches x
(on-target) 20,000 genes x 10 potential transcripts (RNA) per gene x 200 potential edit locations per transcript

Scoring

> Pre-computations

Training Storage Il: Search Engine for
CRISPR gene edits
> Model )
FC - Flow Cytometry Notebooks

RAS — Resistance Assays

Pre-computation ran in 18 days on 16k cores (~7M CPU-hours)
Results stored in Azure Tables with a front-end web interface
Search uses hashing to return ranked results instantly
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Machine learning-based end-to-end CRISPR/Cas9 guide design

Please cite papers according to these instructions

( On-Target + Off-Target ) (On-Target Only )

Input Gene / Transcript ID Input Sequence

Enter value(s) to search, e.g. ENSG00000018510 or Model

ENST00000420982 separated by new line O nvire
® In Vivo

Log In To Search

Contact Us ‘ Privacy & Cookies ‘ Terms of Use ‘ Trademarks ‘ © 2018 B Microsoft

5 code for everything on GitHub

offtarget [?] 4+ on-target[7]

0.38095 0.70755

0.38903 0.60016

0.43129 0.34812

0.44431 0.55046

0.45890 0.53405
0.47083 0.38042

0.47116 0.63856

0.47273 0.53924



Usage per Day

15.6K guides queried
9.6M off-targets
ret u r n e d O Academia O Research Inst.

O Pharma/Life Sci Co. @ Hospital




Cloud-Scale Immunomics

Reading the immune system to diagnose disease

=m Microsoft  Adaptive

biotechnologies®

Slides courtesy of Jonathan Carlson, Ph.D.
Microsoft Research Healthcare NExT

T-cells killing a cancer cell
Credit: Alex Ritter, Jennifer Lippincott Schwartz
and Gillian Griffiths, National Institutes of Health



Learning to decode the immune system to diagnose disease
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Blood Sample Immunosequencing Machine Learning Empowered care
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Learning to decode the immune system to diagnose disease
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Learning to decode the immune system to diagnose disease

Immunosequencing
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Learning to decode the immune system to diagnose disease
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Learning to decode the immune system to diagnose disease

Empowered care
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The biology




The machine learning
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nature

Adaptive genetics

fo({TCR}) — {disease}

0.4 0.6 0.8 1.0
False positive rate




The machine learning

fi(TCR,MHC,peptide) — R (binding energy)

Hennecke and Wiley, Cell 2001

fo({TCR}) — {disease}




The data

fi(TCR,MHC,peptide) — R (binding energy)

Pairwise binding data for
Tk antigens against
™M TCR

fo({TCR}) — {disease}
IMMUNOSEQ
pDalrSEQ

M TCR per clinical sample



Toward a universal diagnostic

T-cells are nature's universal diagnostic machine

1
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g Will generate billions of training samples per day

CELIAC

Cloud-scale machine learning to translate T-cells to antigens

@ Empowered care
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