GPU Acceleration for
Machine Learning

John Canny*#
* Computer Science Division
University of California, Berkeley
N Google Research, 2016

BIDMach on single machines
BIDMach on clusters
DNNSs for Power-Law data

MCMC for massive datasets

Personal History

I R R S

R e i S R e g)

Yahoo [Chen, Pavlov, Canny, KDD 2009]* =3 i

— WRHOO! Nerws gans 1
e
Ebay [Chen, Canny, SIGIR 2011]** | Rz
Vo (B S rem—

Quantcast 2011-2013

Microsoft 2014

Yahoo 2015 [KDD 2015]

Google 2016-

* Best application paper prize
** Best paper honorable mention

Desiderata for an ML Toolkit

- Scala! Performance
Natural Syntax Interactivity
Scripting
Functional =
. Existing
Concurrency - Codebase
i Platform
Productivity Mobilty

Object-Oriented

The Scala Language

- Scala is a JVM language, performance similar to Java.
- But has a REPL, similar to interpreted languages.

- Functional + Object Oriented + Actors.

- High productivity, >> C, >= Python.

- Open syntax (arbitrary operator definitions), great for DSLs.

- Base language for Apache Spark

Performance in Perspective

Matrix A * B (BLAS)

CPU GPU

400 Gflops 5 Tflops

System |Matrix A+ B
C 1600 Mflops
Julia 800 Mflops
Scala 500 Mflops
Lua 5 Mflops
Python 1 Mflops

Sandy Bridge, 2.2 GHz CPU, 1 thread

Dual Haswell (20-core) 2.4 GHz
Titan-X GPU

Philosophy of BIDMach

Roofline design: Explicit accounting of performance limits:
- ALU speed

- Memory latency and throughput
- Network latency and throughput

- Secondary storage latency and throughput

Explorations

Codesign: Hardware-aware kernels:

- Can fit tons of state in GPU registers:
- Natural language parser (EMNLP 2013) 1 tflop
- Fused-kernel Word2Vec (draft paper) 200 gflops
- Auction simulator (IEEE Big Data 2015) 400x CPU
- Backward-step + ADAGRAD
- Random Forests
- Fused LSTM kernels

Coding GPU kernels in CUDA C is hard (C is hard,
massively multi-threaded programming is hard).

Automatic code generation would be great, but we don't
understand the design space yet

Coding CUDA kernels can be greatly accelerated by:
- Writing a "GPU-like” Scala-language program.

- Debug with: Eclipse, interpreter, scripts,...

- Port to CUDA. Scala model provides ground truth.

Stackless Viterbi parser, Auction simulator,...

A Rooflined Machine Learning Toolkit
BIDINACH - oo ke ognea s

CPU host code -
- Mixins

GPU 1 thread 1 -
e
N A

data
Mixins

GPU 2 thread 2

BIDMach ML Algorithms

1.
2.
3.
4.
5.
6.
7.
8.
9.

Regression (logistic, linear)

Support Vector Machines

k-Means Clustering

Topic Modeling - Latent Dirichlet Allocation
Collaborative Filtering

NMF — Non-Negative Matrix Factorization
Factorization Machines

Random Forests

IPTW (Causal Estimation)

ICA

Word2Vec

Discrete Graphical models

Scalable SVD

1D Neural Networks, LSTMs etc.

R . . U U
w0 N O

@ -= Likely the fastest implementation available

Systems (single node)
- BIDMach

- VW (Vowpal Wabbit) from Yahoo/Microsoft
- Scikit-Learn

- LibLinear

Cluster Systems

- Spark v1.2 and v1.5

- Graphlab (academic version)

- Petuum Parameter Server

- Yahoo's LDA cluster

Single-Machine Benchmarks: Multilabel classification
RCV1 dataset: Text Classification, 103 topics (0.5GB).

1000
Time in
seconds 100
(log scale)
10

B Vowpal Wabbit
B LibLinear

B Scikit-Learn

B BIDMach

Benchmarks

Benchmarks vs Clusters: Tasks as indicated

1000
Time in
seconds 100
(log scale)
10

Spark - 72 core
cluster

Spark - 136 core
cluster

BIDMach
(1 Titan-X GPU)

Benchmarks

Unsupervised Learning: Tasks as indicated

] Spark - 384 core
cluster

Time in 1000
seconds
(log scale)

] Graphlab — 576
core cluster

100 -

Petuum — 32 node
cluster

g B/DMach
(1 680 GPU)

10 -

BIDMach
(4 Titan-X)

BIDMach on single machines
BIDMach on clusters
DNNSs for Power-Law data

MCMC for massive datasets

Allreduce vs. Parameter Servers

- Allreduce:
- + B/W optimal, peer-to-peer (good scaling), no queueing, locks

- - synchronous only, dense data only

- Parameter Servers:
- + Sparse updates, asynchronous

- - resource-hungry (large # servers), high staleness, complex

- Sparse Allreduce (Kylix)

- Peer-to-peer, sparse updates, simple, B/W optimal, client
asynchronous, fault tolerant.

Kylix: A Sparse AllIReduce
for Commodity Clusters

ICPP 2014

Hypercube allreduce mitigates latency

- Group size along each dimension controls message in
order to achieve optimal message size.

- Data vectors overlap in each reduction leading to a
reduction in message volume with each layer.

Reduce along third

(smallest) dimension

Power-Law Features

Big Data about people (text, web, social media) usually
follow power law statistics:

102

0.9

0.8

Feature frequency

0.7

05

04 \
0.3

Feature rank
Feature sorted by frequency descending

Minimizing Network Bandwidth

Graded updates refresh each feature at a rate inversely
proportional to its rank. This is proportional (for power law
date) to the rate at which the feature is updated by SGD.

Minibatch

number

Head features \ | Tail features
< | =

Features reduced on each round

Data Volumes with Sparse Data

- Total communication across all layers a small constant
larger than the top layer, which is close to optimal.

- Communication volume across layers has a characteristic
Kylix shape.

Twitter (8x4x2)

3.8

Yahoo (16x4)

1.5

32

0.62
0.16

11
5

Experiments (PageRank)

- Twitter Followers’ Graph

- 1.4 billion edges and 40 million vertices
- Yahoo Web Graph

- 6.7 billion edges and 1.4 billion vertices
- EC2 cluster compute node (cc2.8xlarge)

1000 M Yahoo Web Graph

“» 1000
g W Twitter Followers' Graph
® 100 -
[
=
S
g 10 -
o
E
= 1
S
o

0.1

Hadoop/Pegasus PowerGraph Kylix
90-node Yahoo M45 64-node EC2 64-node EC2

BIDMach-on-Spark

- Spark is a powerful platform for data manipulation in
Scala.

- But only batch updates, immutable objects, unoptimized
ML

- BIDMach-on-Spark adds
- Minibatch updates — faster convergence
- Peer-to-peer, hierarchical Allreduce (Kylix)
- GPU support

BIDMach-on-Spark Benchmarks

Logistic Regression (Criteo 20 GB Dataset).

System Algorithm Passes |AUC |Time(s)
Spark 17x m3.2xlarge LR-LBFGS 3 0.68 3300
BIDMach 1x g2.xlarge LR-SGD 3 0.74 | 3000
BIDMach 17x g2.xlarge LR-SGD 3 0.74 220

BIDMach-on-Spark cluster running periodic Kylix Allreduce.

KMeans on the MNIST 8M dataset (about 26 GB).

System (node type) Nodes |Inertia |Time(s)
Spark (m3.2xlarge) 97 1.5E6 1130
Petuum (m3.2xlarge) 17 ?? 2500
BIDMach (g2.xlarge) 1 1.5E6 460
BIDMach (g2.xlarge) 17 1.5E6 60

BIDMach-on-Spark cluster running batch Allreduce.
All systems running 10 iterations with 1024 centers

BIDMach on single machines
BIDMach on clusters
DNNSs for Power-Law data

MCMC for massive datasets

Power-Law Features

Big Data about people (text, web, social media) follow
power law statistics:

102

0.9

0.8

Feature frequency

0.7

05

04 \
0.3

Feature rank
Feature sorted by frequency descending

DNNSs for Power-law data

< Input feature frequency

Output
Features

- “Powerlayers” include linear maps built from rectangular tiles
with power law shape.

- Used as input layers in regression problems or as input/
output layers in sequence LSTMs.

< Input feature frequency

Output
Features

- We can solve the following optimization problem:

- Which N coefficients should be keep to produce the best
low-dimensional approximation to the original data?

- The solution uses an SVD of the full matrix. For typical data:

- The sequence of singular value magnitudes follows a
power-law.

- It follows that the envelope of non-zeros follows a power-law.

Performance on Criteo 20 GB

- Criteo released a clickthrough dataset which was used for a
Kaggle competition.

- The dataset has 37 million distinct features, about 2.5 billion
features total.

- Preliminary results on a simple 8-layer, full-connected
network with power-law input layer:

. >
O S
& X Y,
' O@Q%bo"o @@&6\‘3 Xéz
Y D 5
\0"0% N3 Y Q@\ >

15th 1st

BIDMach on single machines
BIDMach on clusters
DNNSs for Power-Law data

MCMC for massive datasets

MCMC for Massive Datasets

Why?
- We want to build good models.

- Model parameter spaces complex, multimodal.

- We want to exploit cluster computing as search, (Elastic
Averaging SGD).

- MCMC methods keep us on track in searching the
parameter space, allowing aggressive moves.

MCMC for Massive Datasets

Bernstein Von-Mises Theorem:

P(6)

0

P(0) is the likelihood of model parameters 6. It is
asymptotically normal with variance 1/N for N datapoints.

Not that useful (or practical) to just sample from P(6).

MCMC for Massive Datasets

Heating/Annealing

P(6)

0

Heating scales the log likelihood. Typically smooths the
likelihood landscape, improves accuracy of large steps.

MCMC for Massive Datasets

Scaling the step size:

P(6)

0

We cant take large steps (relative to the posterior) using the

information in a small minibatch (not enough information to
find the mode).

But we can take smaller steps.

Metropolis-Hastings

- From some state 6, propose a new state 6’

- Based on a simple test on the likelihoods p(6) and p(6’),
decide to either accept (move to) 6’ or stay at 6.

Ensures that the sequences of samples 8 come from the
target distribution.

Minibatch Metropolis Hastings

The classical MH test has an acceptance probability which is
asymmetric and non-smooth: Pr(accept)

AU = log(l,/14)

An alternative smooth, symmetric distribution is the logistic
function (Barker’s test):

Pr(accept)

/
1/(1+exp(-AU))
/

AU = log(l,/l,)

Minibatch Metropolis Hastings

Testing against the smooth distribution can be done using a
random variable X whose CDF is the acceptance curve:

Pr(accept) density(X)

/ Accept if

AU = log(l,/1;) X

This allows us to use the minibatch-induced variance in
likelihood estimates to provide the variation for the MH test.

R AN

X (logistic’)

Noise, (normal) X

correction

Minibatch Metropolis Hastings

Testing against the smooth distribution can be done using a
random variable X whose CDF is the acceptance curve:

Pr(accept) density(X)

/ Accept if

AU = log(l,/1;) X

This allows us to use the minibatch-induced variance in
likelihood estimates to provide the variation for the MH test.

we /D /T

X (logistic’)

Noise, (normal) | X

correction

Minibatch Metropolis Hastings

- As long as the variance condition is satisfied:
- Temperature is high enough, OR
- Step size is small enough

We can perform an M-H test with any desired minibatch
size.

Achieves arbitrary speedups over previous approaches.

Allows risky explorations with parallel optimization moves.

Opportunistic MCMC

With a fast MH test in hand, we can explore non-
conservative moves during optimization:

- Max: Each machine in a group moves toward the best
parameter value in the group.

- Mix: Each machine moves toward the average parameter
value (Elastic Averaging SGD).

BIDMach on single machines
BIDMach on clusters
DNNSs for Power-Law data

MCMC for massive datasets

