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Desiderata for an ML Toolkit 

• Scala! 
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The Scala Language 

• Scala is a JVM language, performance similar to Java. 

• But has a REPL, similar to interpreted languages. 

•  Functional + Object Oriented + Actors. 

• High productivity, >> C, >= Python. 

• Open syntax (arbitrary operator definitions), great for DSLs. 

• Base language for Apache Spark 

 



Performance in Perspective 

 

 

 

 

 

 
                                                                          Dual Haswell (20-core) 2.4 GHz 

                                                                                        Titan-X GPU 

 

 
   Sandy Bridge, 2.2 GHz CPU, 1 thread                         

System Matrix A + B 

C 1600 Mflops 

Julia 800 Mflops 

Scala 500 Mflops 

Lua 5 Mflops 

Python 1 Mflops 

Matrix A * B (BLAS) 

CPU GPU 

400 Gflops 5 Tflops 



Philosophy of BIDMach  

Roofline design: Explicit accounting of performance limits: 

• ALU speed 

• Memory latency and throughput 

• Network latency and throughput 

• Secondary storage latency and throughput 



Explorations 

Codesign: Hardware-aware kernels: 

 

• Can fit tons of state in GPU registers: 

• Natural language parser (EMNLP 2013) 1 tflop 

•  Fused-kernel Word2Vec (draft paper) 200 gflops 

• Auction simulator (IEEE Big Data 2015) 400x CPU 

• Backward-step + ADAGRAD 

• Random Forests 

•  Fused LSTM kernels 

   

    

    

   



GPU programming workflow 

Coding GPU kernels in CUDA C is hard (C is hard, 
massively multi-threaded programming is hard). 

 

Automatic code generation would be great, but we don’t 

understand the design space yet 

 

Coding CUDA kernels can be greatly accelerated by: 

• Writing a “GPU-like” Scala-language program. 

• Debug with: Eclipse, interpreter, scripts,… 

• Port to CUDA. Scala model provides ground truth. 

Stackless Viterbi parser, Auction simulator,... 
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BIDMach ML Algorithms 

1.  Regression (logistic, linear)  

2.  Support Vector Machines 

3.  k-Means Clustering 

4.  Topic Modeling - Latent Dirichlet Allocation 

5.  Collaborative Filtering 

6.  NMF – Non-Negative Matrix Factorization 

7.  Factorization Machines  

8.  Random Forests 

9.  IPTW (Causal Estimation) 

10.  ICA 

11.  Word2Vec 

12.  Discrete Graphical models 

13.  Scalable SVD 

14.  1D Neural Networks, LSTMs etc.   

= Likely the fastest implementation available 



Benchmarks 

Systems (single node) 

• BIDMach 

• VW (Vowpal Wabbit) from Yahoo/Microsoft 

• Scikit-Learn 

•  LibLinear 

Cluster Systems 

• Spark v1.2 and v1.5 

• Graphlab (academic version) 

• Petuum Parameter Server 

• Yahoo’s LDA cluster 

   

    

    

   



   

    

    

   

Single-Machine Benchmarks: Multilabel classification 

RCV1 dataset: Text Classification, 103 topics (0.5GB).  
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Benchmarks vs Clusters: Tasks as indicated 
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Unsupervised Learning: Tasks as indicated 
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Allreduce vs. Parameter Servers 

• Allreduce: 

•  + B/W optimal, peer-to-peer (good scaling), no queueing, locks 

•  - synchronous only, dense data only 

• Parameter Servers: 

•  + Sparse updates, asynchronous 

•  - resource-hungry (large # servers), high staleness, complex 

• Sparse Allreduce (Kylix) 

•  Peer-to-peer, sparse updates, simple, B/W optimal, client 

asynchronous, fault tolerant. 

   



Kylix: A Sparse AllReduce 

for Commodity Clusters 

ICPP 2014 



•  Group size along each dimension controls message in 
order to achieve optimal message size. 

•  Data vectors overlap in each reduction leading to a 

reduction in message volume with each layer. 

Reduce along first (longest) dimension 

Hypercube allreduce mitigates latency 



Power-Law Features 

Big Data about people (text, web, social media) usually 
follow power law statistics:  

Feature frequency 

Feature rank 

Feature sorted by frequency descending 

Freq α 1/rankp 



Minimizing Network Bandwidth 

Graded updates refresh each feature at a rate inversely 
proportional to its rank. This is proportional (for power law 

date) to the rate at which the feature is updated by SGD. 

Minibatch 

number 

Features reduced on each round 

Tail features Head features 



Data Volumes with Sparse Data 

•  Total communication across all layers a small constant 
larger than the top layer, which is close to optimal. 

•  Communication volume across layers has a characteristic 

Kylix shape. 



Experiments (PageRank) 

•  Twitter Followers’ Graph 

•  1.4 billion edges and 40 million vertices 

• Yahoo Web Graph 

•  6.7 billion edges and 1.4 billion vertices 

• EC2 cluster compute node (cc2.8xlarge) 

90-node Yahoo M45 64-node EC2  64-node EC2 



BIDMach-on-Spark 

• Spark is a powerful platform for data manipulation in 
Scala.  

• But only batch updates, immutable objects, unoptimized 

ML 

• BIDMach-on-Spark adds 

• Minibatch updates – faster convergence 

• Peer-to-peer, hierarchical Allreduce (Kylix) 

• GPU support 

 

 

 



BIDMach-on-Spark Benchmarks 

Logistic Regression (Criteo 20 GB Dataset). 

 

 

 

 

 

 

 

BIDMach-on-Spark cluster running periodic Kylix Allreduce.  

System Algorithm Passes AUC Time(s) 

Spark  17x m3.2xlarge LR-LBFGS 3 0.68 3300 

BIDMach 1x g2.xlarge LR-SGD 3 0.74 3000 

BIDMach 17x g2.xlarge LR-SGD 3 0.74 220 



BIDMach-on-Spark Benchmarks 

KMeans on the MNIST 8M dataset (about 26 GB). 

 

 

 

 

 

 

 

BIDMach-on-Spark cluster running batch Allreduce.  

All systems running 10 iterations with 1024 centers 

System (node type) Nodes Inertia Time(s) 

Spark  (m3.2xlarge) 97 1.5E6 1130 

Petuum (m3.2xlarge) 17 ?? 2500 

BIDMach (g2.xlarge) 1 1.5E6 460 

BIDMach (g2.xlarge) 17 1.5E6 60 
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Power-Law Features 

Big Data about people (text, web, social media) follow 
power law statistics:  

Feature frequency 

Feature rank 

Feature sorted by frequency descending 

Freq α 1/rankp 



DNNs for Power-law data 

•  “Powerlayers” include linear maps built from rectangular tiles 

with power law shape. 

• Used as input layers in regression problems or as input/
output layers in sequence LSTMs.  
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DNNs for Power-law data 

• We can solve the following optimization problem:  

• Which N coefficients should be keep to produce the best 
low-dimensional approximation to the original data?  

•  The solution uses an SVD of the full matrix. For typical data: 

•  The sequence of singular value magnitudes follows a 
power-law. 

•  It follows that the envelope of non-zeros follows a power-law. 
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Performance on Criteo 20 GB 

• Criteo released a clickthrough dataset which was used for a 
Kaggle competition.  

•  The dataset has 37 million distinct features, about 2.5 billion 

features total.  

• Preliminary results on a simple 8-layer, full-connected 

network with power-law input layer: 

   

    

   
1st 15th 
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Why? 

• We want to build good models.  

• Model parameter spaces complex, multimodal. 

• We want to exploit cluster computing as search, (Elastic 

Averaging SGD). 

• MCMC methods keep us on track in searching the 

parameter space, allowing aggressive moves.   

 

 

MCMC for Massive Datasets 



Bernstein Von-Mises Theorem: 

 

 

 

 

 

P(θ) is the likelihood of model parameters θ. It is 

asymptotically normal with variance 1/N for N datapoints.  

 

Not that useful (or practical) to just sample from P(θ). 

 

 

MCMC for Massive Datasets 

θ 

P(θ) 



Heating/Annealing 

 

 

 

 

 

Heating scales the log likelihood. Typically smooths the 

likelihood landscape, improves accuracy of large steps.  

 

 

MCMC for Massive Datasets 
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Scaling the step size: 

 

 

 

 

 

We cant take large steps (relative to the posterior) using the 

information in a small minibatch (not enough information to 
find the mode). 

 

But we can take smaller steps.  

 

MCMC for Massive Datasets 

θ 

P(θ) 



•  From some state θ, propose a new state θ’. 

• Based on a simple test on the likelihoods p(θ) and p(θ’), 

decide to either accept (move to) θ’ or stay at θ. 

Ensures that the sequences of samples θ come from the 

target distribution.  

 

Metropolis-Hastings 



Minibatch Metropolis Hastings 

The classical MH test has an acceptance probability which is 
asymmetric and non-smooth: 

 

 

 

 

An alternative smooth, symmetric distribution is the logistic 

function (Barker’s test): 

   

    

    

   

ΔU = log(l2/l1) 

Pr(accept) 

exp(ΔU) 

ΔU = log(l2/l1) 

Pr(accept) 

1/(1+exp(-ΔU)) 

1 



Minibatch Metropolis Hastings 

Testing against the smooth distribution can be done using a 
random variable X whose CDF is the acceptance curve: 

 

 

 

 

This allows us to use the minibatch-induced variance in 

likelihood estimates to provide the variation for the MH test.  
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Pr(accept) 
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X 

density(X) 

Accept if 
ΔU + X > 0 

 

NoiseU (normal) X (logistic’)  Xcorrection 



Minibatch Metropolis Hastings 

Testing against the smooth distribution can be done using a 
random variable X whose CDF is the acceptance curve: 

 

 

 

 

This allows us to use the minibatch-induced variance in 

likelihood estimates to provide the variation for the MH test.  

 

ΔU  +                        +            = ΔU  +  

   

    

    

   

ΔU = log(l2/l1) 

Pr(accept) 

exp(ΔU) 

X 

density(X) 

Accept if 
ΔU + X > 0 

 

NoiseU (normal) X (logistic’)  Xcorrection 



Minibatch Metropolis Hastings 

• As long as the variance condition is satisfied: 

•  Temperature is high enough, OR 

• Step size is small enough 

We can perform an M-H test with any desired minibatch 

size.  

 

Achieves arbitrary speedups over previous approaches. 

 

Allows risky explorations with parallel optimization moves.  



Opportunistic MCMC 

With a fast MH test in hand, we can explore non-
conservative moves during optimization: 

 

• Max: Each machine in a group moves toward the best 

parameter value in the group.  

• Mix: Each machine moves toward the average parameter 

value (Elastic Averaging SGD).  
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