
GPU Acceleration for

Machine Learning

John Canny*^

* Computer Science Division

University of California, Berkeley

^ Google Research, 2016

BIDMach on single machines

BIDMach on clusters

DNNs for Power-Law data

MCMC for massive datasets

Outline

Yahoo [Chen, Pavlov, Canny, KDD 2009]*

Ebay [Chen, Canny, SIGIR 2011]**

Quantcast 2011-2013

Microsoft 2014

Yahoo 2015 [KDD 2015]

Google 2016-

* Best application paper prize

** Best paper honorable mention

Personal History

Desiderata for an ML Toolkit

• Scala!

Performance

Interactivity

Scripting

Existing

Codebase

Object-Oriented

Productivity

Concurrency

Natural Syntax

Functional

Platform

Mobility

The Scala Language

• Scala is a JVM language, performance similar to Java.

• But has a REPL, similar to interpreted languages.

•  Functional + Object Oriented + Actors.

• High productivity, >> C, >= Python.

• Open syntax (arbitrary operator definitions), great for DSLs.

• Base language for Apache Spark

Performance in Perspective

 Dual Haswell (20-core) 2.4 GHz

 Titan-X GPU

 Sandy Bridge, 2.2 GHz CPU, 1 thread

System Matrix A + B

C 1600 Mflops

Julia 800 Mflops

Scala 500 Mflops

Lua 5 Mflops

Python 1 Mflops

Matrix A * B (BLAS)

CPU GPU

400 Gflops 5 Tflops

Philosophy of BIDMach

Roofline design: Explicit accounting of performance limits:

• ALU speed

• Memory latency and throughput

• Network latency and throughput

• Secondary storage latency and throughput

Explorations

Codesign: Hardware-aware kernels:

• Can fit tons of state in GPU registers:

• Natural language parser (EMNLP 2013) 1 tflop

•  Fused-kernel Word2Vec (draft paper) 200 gflops

• Auction simulator (IEEE Big Data 2015) 400x CPU

• Backward-step + ADAGRAD

• Random Forests

•  Fused LSTM kernels

GPU programming workflow

Coding GPU kernels in CUDA C is hard (C is hard,
massively multi-threaded programming is hard).

Automatic code generation would be great, but we don’t

understand the design space yet

Coding CUDA kernels can be greatly accelerated by:

• Writing a “GPU-like” Scala-language program.

• Debug with: Eclipse, interpreter, scripts,…

• Port to CUDA. Scala model provides ground truth.

Stackless Viterbi parser, Auction simulator,...

DataSource
(local disk)

Learner

Model

Optimizer

Mixins

Model

Optimizer

Mixins

GPU 1 thread 1

:

:

CPU host code

data

blocks

DataSource
(Memory)

DataSource
HDFS over

network

Zhao+Canny SIAM DM 13, KDD 13,
KDD 2015, IEEE BigData 2015

A Rooflined Machine Learning Toolkit

DataSink
(local disk)

DataSink
(Memory)

DataSink
HDFS over

network

GPU 2 thread 2

BIDMach ML Algorithms

1.  Regression (logistic, linear)

2.  Support Vector Machines

3.  k-Means Clustering

4.  Topic Modeling - Latent Dirichlet Allocation

5.  Collaborative Filtering

6.  NMF – Non-Negative Matrix Factorization

7.  Factorization Machines

8.  Random Forests

9.  IPTW (Causal Estimation)

10.  ICA

11.  Word2Vec

12.  Discrete Graphical models

13.  Scalable SVD

14.  1D Neural Networks, LSTMs etc.

= Likely the fastest implementation available

Benchmarks

Systems (single node)

• BIDMach

• VW (Vowpal Wabbit) from Yahoo/Microsoft

• Scikit-Learn

•  LibLinear

Cluster Systems

• Spark v1.2 and v1.5

• Graphlab (academic version)

• Petuum Parameter Server

• Yahoo’s LDA cluster

Single-Machine Benchmarks: Multilabel classification

RCV1 dataset: Text Classification, 103 topics (0.5GB).

Benchmarks

1000

100

10

1

Time in
seconds

(log scale)

Vowpal Wabbit

LibLinear

Scikit-Learn

BIDMach

Benchmarks vs Clusters: Tasks as indicated

Benchmarks

1000

100

10

1

Time in
seconds

(log scale)

Spark - 72 core
cluster

BIDMach
(1 Titan-X GPU)

Spark - 136 core
cluster

Unsupervised Learning: Tasks as indicated

Benchmarks

1000

100

10

1

Time in
seconds

(log scale)

Spark - 384 core
cluster

BIDMach
(1 680 GPU)

Petuum – 32 node
cluster

Graphlab – 576
core cluster

BIDMach
(4 Titan-X)

BIDMach on single machines

BIDMach on clusters

DNNs for Power-Law data

MCMC for massive datasets

Outline

Allreduce vs. Parameter Servers

• Allreduce:

•  + B/W optimal, peer-to-peer (good scaling), no queueing, locks

•  - synchronous only, dense data only

• Parameter Servers:

•  + Sparse updates, asynchronous

•  - resource-hungry (large # servers), high staleness, complex

• Sparse Allreduce (Kylix)

•  Peer-to-peer, sparse updates, simple, B/W optimal, client

asynchronous, fault tolerant.

Kylix: A Sparse AllReduce

for Commodity Clusters

ICPP 2014

•  Group size along each dimension controls message in
order to achieve optimal message size.

•  Data vectors overlap in each reduction leading to a

reduction in message volume with each layer.

Reduce along first (longest) dimension

Hypercube allreduce mitigates latency

Power-Law Features

Big Data about people (text, web, social media) usually
follow power law statistics:

Feature frequency

Feature rank

Feature sorted by frequency descending

Freq α 1/rankp

Minimizing Network Bandwidth

Graded updates refresh each feature at a rate inversely
proportional to its rank. This is proportional (for power law

date) to the rate at which the feature is updated by SGD.

Minibatch

number

Features reduced on each round

Tail features Head features

Data Volumes with Sparse Data

•  Total communication across all layers a small constant
larger than the top layer, which is close to optimal.

•  Communication volume across layers has a characteristic

Kylix shape.

Experiments (PageRank)

•  Twitter Followers’ Graph

•  1.4 billion edges and 40 million vertices

• Yahoo Web Graph

•  6.7 billion edges and 1.4 billion vertices

• EC2 cluster compute node (cc2.8xlarge)

90-node Yahoo M45 64-node EC2 64-node EC2

BIDMach-on-Spark

• Spark is a powerful platform for data manipulation in
Scala.

• But only batch updates, immutable objects, unoptimized

ML

• BIDMach-on-Spark adds

• Minibatch updates – faster convergence

• Peer-to-peer, hierarchical Allreduce (Kylix)

• GPU support

BIDMach-on-Spark Benchmarks

Logistic Regression (Criteo 20 GB Dataset).

BIDMach-on-Spark cluster running periodic Kylix Allreduce.

System Algorithm Passes AUC Time(s)

Spark 17x m3.2xlarge LR-LBFGS 3 0.68 3300

BIDMach 1x g2.xlarge LR-SGD 3 0.74 3000

BIDMach 17x g2.xlarge LR-SGD 3 0.74 220

BIDMach-on-Spark Benchmarks

KMeans on the MNIST 8M dataset (about 26 GB).

BIDMach-on-Spark cluster running batch Allreduce.

All systems running 10 iterations with 1024 centers

System (node type) Nodes Inertia Time(s)

Spark (m3.2xlarge) 97 1.5E6 1130

Petuum (m3.2xlarge) 17 ?? 2500

BIDMach (g2.xlarge) 1 1.5E6 460

BIDMach (g2.xlarge) 17 1.5E6 60

BIDMach on single machines

BIDMach on clusters

DNNs for Power-Law data

MCMC for massive datasets

Outline

Power-Law Features

Big Data about people (text, web, social media) follow
power law statistics:

Feature frequency

Feature rank

Feature sorted by frequency descending

Freq α 1/rankp

DNNs for Power-law data

•  “Powerlayers” include linear maps built from rectangular tiles

with power law shape.

• Used as input layers in regression problems or as input/
output layers in sequence LSTMs.

Input feature frequency

Output
Features

DNNs for Power-law data

• We can solve the following optimization problem:

• Which N coefficients should be keep to produce the best
low-dimensional approximation to the original data?

•  The solution uses an SVD of the full matrix. For typical data:

•  The sequence of singular value magnitudes follows a
power-law.

•  It follows that the envelope of non-zeros follows a power-law.

Input feature frequency

Output
Features

Performance on Criteo 20 GB

• Criteo released a clickthrough dataset which was used for a
Kaggle competition.

•  The dataset has 37 million distinct features, about 2.5 billion

features total.

• Preliminary results on a simple 8-layer, full-connected

network with power-law input layer:

1st 15th

BIDMach on single machines

BIDMach on clusters

DNNs for Power-Law data

MCMC for massive datasets

Outline

Why?

• We want to build good models.

• Model parameter spaces complex, multimodal.

• We want to exploit cluster computing as search, (Elastic

Averaging SGD).

• MCMC methods keep us on track in searching the

parameter space, allowing aggressive moves.

MCMC for Massive Datasets

Bernstein Von-Mises Theorem:

P(θ) is the likelihood of model parameters θ. It is

asymptotically normal with variance 1/N for N datapoints.

Not that useful (or practical) to just sample from P(θ).

MCMC for Massive Datasets

θ

P(θ)

Heating/Annealing

Heating scales the log likelihood. Typically smooths the

likelihood landscape, improves accuracy of large steps.

MCMC for Massive Datasets

θ

P(θ)

Scaling the step size:

We cant take large steps (relative to the posterior) using the

information in a small minibatch (not enough information to
find the mode).

But we can take smaller steps.

MCMC for Massive Datasets

θ

P(θ)

•  From some state θ, propose a new state θ’.

• Based on a simple test on the likelihoods p(θ) and p(θ’),

decide to either accept (move to) θ’ or stay at θ.

Ensures that the sequences of samples θ come from the

target distribution.

Metropolis-Hastings

Minibatch Metropolis Hastings

The classical MH test has an acceptance probability which is
asymmetric and non-smooth:

An alternative smooth, symmetric distribution is the logistic

function (Barker’s test):

ΔU = log(l2/l1)

Pr(accept)

exp(ΔU)

ΔU = log(l2/l1)

Pr(accept)

1/(1+exp(-ΔU))

1

Minibatch Metropolis Hastings

Testing against the smooth distribution can be done using a
random variable X whose CDF is the acceptance curve:

This allows us to use the minibatch-induced variance in

likelihood estimates to provide the variation for the MH test.

ΔU + + = ΔU +

ΔU = log(l2/l1)

Pr(accept)

exp(ΔU)

X

density(X)

Accept if
ΔU + X > 0

NoiseU (normal) X (logistic’) Xcorrection

Minibatch Metropolis Hastings

Testing against the smooth distribution can be done using a
random variable X whose CDF is the acceptance curve:

This allows us to use the minibatch-induced variance in

likelihood estimates to provide the variation for the MH test.

ΔU + + = ΔU +

ΔU = log(l2/l1)

Pr(accept)

exp(ΔU)

X

density(X)

Accept if
ΔU + X > 0

NoiseU (normal) X (logistic’) Xcorrection

Minibatch Metropolis Hastings

• As long as the variance condition is satisfied:

•  Temperature is high enough, OR

• Step size is small enough

We can perform an M-H test with any desired minibatch

size.

Achieves arbitrary speedups over previous approaches.

Allows risky explorations with parallel optimization moves.

Opportunistic MCMC

With a fast MH test in hand, we can explore non-
conservative moves during optimization:

• Max: Each machine in a group moves toward the best

parameter value in the group.

• Mix: Each machine moves toward the average parameter

value (Elastic Averaging SGD).

BIDMach on single machines

BIDMach on clusters

DNNs for Power-Law data

MCMC for massive datasets

Summary

