
Scaling Machine Learning at
Salesforce

Leah McGuire, PhD

Lead Member of Technical Staff

What I am going to talk about:

•  The Salesforce use case – helping

companies make better use of their data

•  One model per company – scaling model

building

•  Our machine learning platform – how to

build many different types of models with

one one model per company

•  The importance of monitoring in

automation

In case you are curious… or want to take a nap.
Blah blah blah.

Blah

z z

z

•  Definition: Machine Learning

“Machine learning algorithms can figure out how to perform important tasks by

generalizing from examples. This is often feasible and cost-effective where

manual programing is not. As more data becomes available, more ambitious

problems can be tackled. As a result, machine learning is widely used in computer

science and other fields. However, developing successful machine learning

applications requires a substantial amount of ‘black art’ that is hard to find in text

books” – Pedro Domingos, U of Washington, A Few Useful Things to Know about

Machine Learning.

•  ML is not magic, just statistics – generalizing examples

•  But what is this ‘black art’?

•  You cant just throw algorithm at your raw data and expect good results

•  Different types of problems require different algorithms

•  Data needs to be: 1) cleaned so that ‘bad’ data is removed 2) manipulated so

that the most predictive features are available 3) put into the correct format

Or not.

The magical panacea that is machine learning…

The Salesforce use case

•  We store data for other companies – all kinds

of data (sales, marketing, operations, etc.)

•  They want this data to be “smart”

•  We need to provide machine learning on top of

the data stored in our systems

The Salesforce use case

•  The key difference from most ML use cases – building a model for a single use

case means building hundreds or thousands of models

•  Each companies data is treated separately!

•  We know what type of information is each table and column, but companies use

the fields differently and have different properties

Model Fitting

The industry reality

Building a machine learning model

Feature Engineering

Model A

Model B

Model C

Evaluation 1

Data

Source

Data

Source

Data

Source

Data

Source

Data

ETL

Feature
Extraction

Feature Trans-
formations

Feature Engineering

Feature Engineering

Production-

alization /
Scoring

Evaluation 2

Over and over again

Building a machine learning model

D

at

a

S

ou
rc

e

D

at

a

S

ou
rc

e

S

ou

rc

e

D

at

a

S

ou
rc

e

D

at

a

S

ou
rc

e

S

ou

rc

e

How do we scale this?

Building a machine learning model

•  Need to have the data extraction and processing happen

automatically, seamlessly, and with as much information as possible

about the data (STRONGLY TYPED DATA)

•  Need to manage model updates to be sure nothing goes wrong with

model retraining

•  Need to score in a timely manner so that the information is useful

•  All this alone could be several talks, but I am going to talk about the

middle…How do you build all these models?

Data

Source

Data

Source

Data

Source

Data

Source

Data

ETL

Production-

alization
Score return/use

•  Most of the time goes into data manipulation

(80-95% depending on who you talk to)

•  So this as automated as possible for first pass

•  Modeling wrapped in standard interface so

can switch models easily

How do we scale this?

Building a machine learning model

LOTS of people have build ML frameworks.
ML

LOTS of people have build ML frameworks.
ML

•  Heavily influenced by Spark ML, Keystone ML, Prediction IO

•  Everything is build on Spark

•  Modular reusable pieces

•  Type safe

•  Take whatever pieces from these platforms we can and build them

into our platform

•  Automation of everything we can possibly automate

•  We need to deal with feature engineering in a smart way

•  We need to do model selection and hyperparameter tuning

automatically (to some extent)

•  Evaluation and metrics everywhere!

•  Measure EVERYTHING – and respond appropriately

Lets not reinvent the wheel here.

What can we use and what do we need that isn’t there?

So what have

we learned?

The pieces of our ML platform

Feature Extractor

Data Prep

Joining data sources

Time based

aggregation

Conditional

aggregation

Transformation Plan

Feature Engineering

Znorm,

Log transforms,

TFIDF, cosine

similarity, categorical

pivots

Model Selector

Model Selection

Sanity Checking

Rebalancing

Model Fitting

Recalibration

Scoring

Prediction

Load Model

Data Prep &

Feature

Transformation

Apply model

Workflow

•  Extractors function as an interface between the data and our framework

•  They are generally defined one per data source – can have many per

workflow

•  Conversion from input to our data format is several stages

•  Data is read and a specific type of record is returned

•  Events are defined for that record type

•  Events are used to extract features for each row

•  Each type of feature is aggregated overtime or condition

•  Features are combined to give a single feature vector for each entity to be scored

•  All our data looks the same no matter where it came from!

The first part of making each step re-usable is to put things in a
standard format

Feature Extractors
Feature Extractor

Data Prep

Joining data

sources

Time based

aggregation

Conditional

aggregation

•  There are many types of transformations that we may want to perform

•  Mathematical – Log, Normalize, Cap …

•  Expansion – Pivot, Bin, TFIDF …

•  Reduction – Hash, Minimum Requirements …

•  Combination – Interaction, Similarity …

•  Time – Days Since, Weeks Since, Occurred on ..

•  Type specific – Valid phone number, email domain extraction

•  Can capture these in two main types of transformers

•  Simple – takes a single row and produces a new value

•  Aggregate – needs to know about the entire column values (Twitter Algebird:
prepare, reduce, present)

•  Can chain these together as efficiently as possible in a DAG

Feature engineering is a large part of building a good model
Feature Transformers

Transformation Plan

Feature Engineering

Znorm,

Log transforms,

TFIDF, cosine

similarity, categorical

pivots

What you write and what you get

Feature Transformers
Transformation Plan

Feature Engineering

Znorm,

Log transforms,

TFIDF, cosine

similarity, categorical

pivots

•  A sequence of transformations, generated by mapping over the features names

that need that transformation

val loggedClicks = clicks.log()

val pivotedState = state.topKPivot(10)

val tfidfRespondedSubjects = respondedSubjects.tfidf()

val tfidfIgnoredSubjects = ignoredSubjects.tfidf()

val subjectSimilarity= tfidfRespondedSubjects.similarity(tfidfIgnoredSubjects)

•  A brand new set of features that have been explicitly transformed (even if just

with identity)

Key Clicks State Opens Subject

A 0 CA 0 Blah

B 5 NM 10 Boo

C 1 TX 2 Stuff

Key Clicks-
Log

State-CA State-NM Opens/
Send

Subject-
Similarity

A 0.0 1 0 0.0 0.99

B 1.791759 0 1 0.5 0.01

C 0.693147 0 0 0.13 0.04

•  Want to be able to switch models easily – One interface for all models

•  Need to get the data in the correct format for whatever library or model

•  Check your data before fitting the model (Sanity Checker) - Make sure there is no

label leakage, make sure your features have the values / ranges you expect

•  Do resampling and rebalancing as needed

•  Fit the model or models and do hyperparameter tuning

•  Save model for later use

•  What you get out: the model

•  Needs to score data

•  Provide info about the model performance

•  Load saved models

Make a uniform interface for all machine learning models

Model Selectors
Model Selector

Model Selection

Sanity Checking

Rebalancing

Model Fitting

Recalibration

Scoring
Scoring

Prediction

Load Model

Data Prep &

Feature

Transformation

Apply model

•  Use saved feature transformations and model to

provide scores

•  Reuses the model training workflow with different

parameters

•  Occurs as frequently as needed to provide

customers useful scores

•  Write the scores back out to whatever format

needed to serve the customers

The pieces of our ML platform

Feature Extractor

Data Prep

Joining data sources

Time based

aggregation

Conditional

aggregation

Transformation Plan

Feature Engineering

Znorm,

Log transforms,

TFIDF, cosine

similarity, categorical

pivots

Model Selector

Model Selection

Sanity Checking

Rebalancing

Model Fitting

Recalibration

Scoring

Prediction

Load Model

Data Prep &

Feature

Transformation

Apply model

Workflow

•  Have to make sure your models are worth shipping

•  Need many metrics of performance

•  If the model doesn’t meet the criteria set it does not go out

•  Need to make sure that model quality is consistent

•  Retrain models periodically and report quality to end users

•  If quality drops need to figure out why

•  If the pipeline fails need to know why

•  New customers can break your assumptions about the

data

•  Old customers can change the way they are using fields

or have data issues

Is it actually working?

So great, we have a way to make lots of models!

Or you know, failure…

•  At Salesforce we need to scale machine learning not only

for the size of data but for the number of customers

•  We can build a single machine learning pipeline which

builds many models for a particular application

•  Each model is customized to the customers data

•  The platform automatically transforms data to deal with

differences between companies

•  The platform automatically selects the best model and

parameters from the set you define

•  We can detect issues with the data and respond

appropriately

•  We WANT to be able to allow customers to tweak the

models

Ok so far but this isn’t enough…

Summary and next steps.

http://learningradiology.com/misc/sitemap.htm

thank y u
 &

We are hiring J

