Machine Learning @ Microsoft

Stanford Scaled Machine Learning Conference

August 2nd 2016

Qi Lu, Application & Services Group, Microsoft

Agenda

- What We Do
 - History
 - Going forward
- How We Scale
 - CNTK
 - FPGA
 - Open Mind
- Q&A

What We Do

ML @ Microsoft: History Answering questions with experience

Machine learning is pervasive throughout Microsoft products

ML @ Microsoft: Going Forward

- Data => Model => Intelligence => Fuels of Innovation
- Applications & Services
 - Office 365, Dynamic 365 (Biz SaaS), Skype, Bing, Cortana
 - Digital Work & Digital Life
 - Models for: World, Organizations, Users, Languages, Context, ...
- Computing Devices
 - PC, Tablet, Phone, Wearable, Xbox, Hololens (AR/VR),
 - Models for: Natural User Interactions, Reality, ...
- Cloud
 - Azure Infrastructure and Platform
 - Azure ML Tools & Services
 - Intelligence Services

Machine Learning Building Blocks

Azure ML (Cloud)

Ease of use through Visual Workflows

Single click operationalization

Expand reach with Gallery and marketplace

Integration with Jupyter Notebook

Integration with R/ Python

Microsoft R Server (On-Prem & Cloud)

Enterprise Scale & Performance

Write Once, Deploy Anywhere

R Tools for Visual Studio IDE

Secure/Scalable Operationalization

Works with open source R

Computational Network Toolkit

Designed for peak performance

Works on CPU and GPU (single/multi)

Supports popular network types (FNN, CNN, LSTM, RNN)

Highly Flexible – description language

Used to build cognitive APIs

Cognitive APIs (Cloud Services)

See, hear, interpret, and interact

Prebuilt APIs with CNTK and experts

Vision, Speech, Language, Knowledge,

Build and connect intelligent bots

Interact with your users on SMS, text, email, Slack, Skype

HDInsight/Spark

Open source Hadoop with Spark

Use Spark ML or MLLib using Java, Python, Scala or R

Support for Zeppelin and Jupyter notebook

Includes MRS over Hadoop or over Spark

Train on TBs of data

Run large massively parallel compute and data jobs

Azure Machine Learning Services

- Ease of use tools with drag/drop paradigm, single click operationalization
- Built-in support for statistical functions, data ingest, transform, feature generate/select, train, score, evaluate for tabular data and text across classification, clustering, recommendation, anomaly
- Seamless R/Python integration along with support for SQL lite to filter, transform
- Jupyter Notebooks for data exploration and Gallery extensions for quick starts
- Modules for text preprocessing, key phrase extraction, language detection, n-gram generation, LDA, compressed feature hash, stats based anomaly
- Spark/HDInsight/MRS Integration
- GPU support
- New geographies
- Compute reservation

Intelligence Suite

Cognitive Services

 Vision 	Speech	Language	🔅 Knowledge	🔎 Search
Computer vision	Speaker recognition	Text analytics	Academic knowledge	Bing search API
Face	Speech	Bing spell check	Entity linking service	Bing image search API
Emotion	Custom recognition	Web language model	Knowledge	Dingvideo
Video		Linguistic analysis	exploration service	search API
			Recommendations	5.
		Language		Bing news
		understanding		search API
		Translator		Bing auto
				suggest API

How We Scale

Key Dimensions of Scaling

- Data volume / dimension
- Model / algorithm complexity
- Training / evaluation time
- Deployment / update velocity
- Developer productivity / innovation agility
- Infrastructure / platform
- Software framework / tool
- Data set / algorithm

How We Scale Example: CNTK

CNTK: Computational Network Toolkit

- CNTK is Microsoft's open-source, cross-platform toolkit for learning and evaluating models especially deep neural networks
- CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting common network types and applications
- CNTK is production-deployed: accuracy, efficiency, and scales to multi-GPU/multi-server

CNTK Development

- Open-source development model inside and outside the company
 - Created by Microsoft Speech researchers 4 years ago; open-sourced in early 2015
 - On GitHub since Jan 2016 under permissive license
 - Nearly all development is out in the open
- Driving applications: Speech, Bing, Hololens, MSR research
 - Each team have full-time employees actively contribute to CNTK
 - CNTK trained models are tested and deployed in production environment
- External contributions
 - e.g., from MIT and Stanford
- Platforms and runtimes
 - Linux, Windows, .Net, docker, cudnn5
 - Python, C++, and C# APIs coming soon

CNTL Design Goals & Approach

- A deep learning framework that balances
 - Efficiency: can train production systems as fast as possible
 - Performance: can achieve best-in-class performance on benchmark tasks for production systems
 - Flexibility: can support a growing and wide variety of tasks such as speech, vision, and text; can try out new ideas very quickly
- Lego-like composability
 - Support a wide range of networks
 - E.g. Feed-forward DNN, RNN, CNN, LSTM, DSSM, sequence-to-sequence
- Evolve and adapt
 - Design for emerging prevailing patterns

Key Functionalities & Capabilities

- Supports
 - CPU and GPU with a focus on GPU Cluster
 - Automatic numerical differentiation
 - Efficient static and recurrent network training through batching
 - Data parallelization within and across machines, e.g., 1-bit quantized SGD
 - Memory sharing during execution planning
- Modularization with separation of
 - Computational networks
 - Execution engine
 - Learning algorithms
 - Model description
 - Data readers
- Model descriptions via
 - Network definition language (NDL) and model editing language (MEL)
 - Brain Script (beta) with Easy-to-Understand Syntax

Roadmap

- CNTK as a library
 - More language support: Python/C++/C#/.Net
- More expressiveness
 - Nested loops, sparse support
- Finer control of learner
 - SGD with non-standard loops, e.g., RL
- Larger model
 - Model parallelism, memory swapping, 16-bit floats
- More powerful CNTK service on Azure
 - GPUs soon; longer term with cluster, container, new HW (e.g., FPGA)

How We Scale Example: FPGA

Catapult v2 Architecture

- Gives substantial acceleration flexibility
 - Can act as a local compute accelerator
 - Can act as a network/storage accelerator
 - Can act as a remote compute accelerator

WCS Gen4.1 Blade with Mellanox NIC and Catapult FPGA

Configurable Clouds

Traditional server infrastructure

- Cloud becomes network + FPGAs attached to servers
- Can continuously upgrade/change datacenter HW protocols (network, storage, security)
- Can also use as an application acceleration plane (Hardware Acceleration as a Service (HaaS)
- Services communicate with no SW intervention (LTL)
- Single workloads (including deep learning) can grab 10s, 100s, or 1000s of FPGAs
- Can create service pools as well for high throughput

Scalable Deep Learning on FPGAs

- Scale ML Engine: a flexible DNN accelerator on FPGA
 - Fully programmable via software and customizable ISA
 - Over 10X improvement in energy efficiency, cost, and latency versus CPU
- Deployable as large-scale DNN service pools via HaaS
 - Low latency communication in few microseconds / hop
 - Large scale models at ultra low latencies

How We Scale Example: Open Mind

Open Mind Studio: the "Visual Studio" for Machine Learning Data, Model, Algorithm, Pipeline, Experiment, and Life Cycle Management

Programming Abstractions for Machine Learning / Deep Learning

	Other Deep	Open	Specialized,	The Next
	Learning	Source	Optimized	New
CNTK	Frameworks	Computation	Computation	Framework
	(e.g., Caffe, MxNet, TensorFlow, Theano, Torch)	Frameworks	Frameworks	
		(e.g., Hadoop, Spark)	(e.g., SCOPE, ChaNa)	••••

Federated Infrastructure

Data Storage, Compliance, Resource Management, Scheduling, and Deployment

Heterogeneous Computing Platform (CPU, GPU, FPGA, RDMA; Cloud, Client/Device)

ChaNa:RDMA-Optimized Computation Framework

- Focus on faster network
 - Compact memory representation
 - Balanced parallelism
 - Highly optimized RDMA-aware communication primitives
 - Overlapping communication and computation
- An order of magnitude improvement in early results
 - Over existing computation frameworks (with TCP)
 - Against several large-scale workloads in production

Programming Abstraction for Machine Learning

- Graph Engines for Distributed Machine Learning
 - Automatic system-level optimizations
 - Parallelization and distribution
 - Layout for efficient data access
 - Partitioning for balanced parallelism
- Promising early results
 - Simplification of distributed ML programs via high level abstractions
 - About 70-80% reduction in code
 - Relative to ML systems such as Petuum, Parameter Server
 - Matrix Factorization for recommendation system
 - Latent Dirichlet Allocation for topic modeling

Q&A

Thank You!