
1ScaledML 2018
simon@graphcore.ai

Scaling Throughput Processors
for Machine Intelligence
ScaledML Stanford 24-Mar-18

2ScaledML 2018

“MI”

The impact on humanity of harnessing machine intelligence will be

greater than the impact of harnessing machine power.

This is the strongest driver to re-invent computing since the invention of

computing. Programming & software & hardware will all change.

3ScaledML 2018

There are 3 parts (so far) to
“intelligence compute":
• simulating environments
• exploring model structures
• optimizing candidate models

The fundamental and challenging new
data-type is the graph, not really the
tensor calculations at its vertices.

ResNet-50
training batch=4

4ScaledML 2018

CPU
Scalar
Designed for office apps
Evolved for web servers

GPU
Vector
Designed for graphics
Evolved for linear algebra

IPU
Graph
Designed for intelligence

Processor are built for specific workloads

5ScaledML 2018

We’ve all tried to squeeze the pips out of tensor algebra

Volta
batch=64

TPU2
batch=256

Colossus
batch=4

Headline vs delivered “dot product” flops training ResNet50:

Amdahl’s Law is tough!

11%
18%

~20%

125Tflop/s

180Tflop/s*
>200Tflop/s**

*TPU2 card certainly burns more
power than V100 and Colossus.

**Colossus peak tba.

6ScaledML 2018

Our comprehension and mechanization of intelligence is nascent
• A new class of workload – approximate computing on probability distributions

learned from data.
• SOTA models and algorithms change every year.
• Huge compute demand for model optimization, more for exploration.

Until we know more, we need computing machines which...
• exploit massive parallelism;
• are broadly agnostic to model structure

...but can assume sparsity, stochasticity, and physical invariances in space & time;
• have a simple programming abstraction;
• are efficient for exploring, training and deployed inference.

7ScaledML 2018

Say we want 1000x throughput performance in the next decade. How much will come
“for free” from silicon scaling?

The era of “amazing” silicon scaling ended around 2005 (90nm). All throughput
processors are now power limited.

8ScaledML 2018

“90nm”

“65nm”

“40nm”

“28nm”

“16nm”
wire C density
(normalized)

wire grid density (normalized)

Each process node:

~2x T density

~√2x C density

P ~ CV2f

Best case: reduce V by

~20% per node to deliver

2x compute at constant

power – this is tough.

Wire C density as a proxy for total logic C density:

(foundry nodes)

9ScaledML 2018

Xeon servers are not delivering that
best case:
• transistors / chip ~30% / year
• throughput / Watt ~15% / year

65n
Woodcrest X5160 2c
Conroe X3085 2c

45n
Lynnfield X3470 4c
Nehalem X7550 8c

32n
Westmere E7-8870 10c
SandyBridge E5-2690 8c

22n
IvyBridge E7-2890v2 15c
Haswell E7-8890v3 18c

14n
Broadwell E7-8894v4 24c
Skylake 8180P 28c

65n 45n 32n 22n 14n

~2.5 years/node

SRAM
bitcells/um2

logic T/um2

(10.mmp.cpp/T)

core
cycles/Joule

Big Xeon exemplars (plotting
geomean for each node):

~ √2x per node

~ 2x per nodelog

10ScaledML 2018

largest manufacturable
die ~825mm2

200W

Scaling at constant frequency

200W
200W

node N+2
4T transistors

node N+1
2T transistors

node N
T transistors

active fraction @
best case scaling

active fraction @
Xeon scaling

11ScaledML 2018

• Silicon process scaling will probably yield 3-10x throughput in the next decade.

• If we want another 100x it must come from connecting chips together, and from

new architecture.

• Not enough will come from new hardware architecture without software and

algorithm co-innovation.

12ScaledML 2018

Architecture drivers

Silicon efficiency is now the full (productive) use of available power
• Memory on chip consumes little power, is more useful than logic which can’t be powered!
• Keep data local, ie. distribute the memory.
• Serialise communication and compute.
• Cluster multiple chips to emulate a bigger chip with more power.

There is a poor performance return on single processor complexity
(Pollack’s Rule: performance ~ √ transistor count)

• To maximize throughput performance, use many simple processors.

Parallel programs are hard to get right, hard to map to massively parallel machines
• BSP is a simple abstraction, guaranteed free of concurrency hazards.
• Compile communication patterns, like you compile functions.

13ScaledML 2018

• Static partitioning of work and memory
• Threads hide only local latencies (arithmetic, memory, branch)
• Deterministic communication over a stateless “exchange”

Pure distributed machine with compiled communication

M

Exchange

R

P

M

R

P

M

R

P

M

R

P

14ScaledML 2018

16GB @ 900GB/s 600MB @ 90TB/s, zero latency

GPU + DRAMs
on interposer

Two different plans

IPU pair with
distributed SRAM

GPU IPU IPU

Same total power, similar active logic in both cases

15ScaledML 2018

2432 processor tiles >200Tflop16.32 ~600MB

host I/O
PCIe-4

all-to-all exchange spines each ~8TBps
link + host bandwidth 384GBps/chip

card-to-card
links

card-to-card
links

host I/O
PCIe-4

card-to-card
links

card-to-card
links

“Colossus” IPU pair
(300W PCIe card)

16ScaledML 2018

h
o
s
t
I/
O

h
o
s
t
I/
O

inter-chip sync

sync

sync

sync

sync

sync

sync (1 tile abstains)

inter-chip sync

Bulk Synchronous Parallel (BSP)

chip.1

chip.2

compute phase

exchange phase

Massively parallel computing
with no concurrency hazards

17ScaledML 2018

Concurrent...

Serialized...

Compute

Exchange

Power

Time

Power ceiling
Power

Time

Power ceiling

C
o

m
p

u
te

E
x
c
h

a
n

g
e

Power

Time

Power ceiling
Power

Time

Power ceiling

Compute

C
o

m
p

u
te

Exchange

E
x
c
h
a
n
g
e

s
a

v
e

d
 t

im
e

saved power

Design point Operating point

Serializing compute and communication maximizes power-limited throughput

18ScaledML 2018

BSP Execution Trace

COMPUTE EXCHANGE WAITING	FOR	SYNC SYNC

time

tiles
(sorted)

superstep

when some Tiles are quiet, clock can increase

19ScaledML 2018

BSP Trace: ResNet-50 training, batch=4

COMPUTE EXCHANGE WAITING	FOR	SYNC SYNC

20ScaledML 2018

Colossus integrates enough memory to hold a large model on chip, or on a small cluster
of chips. In GPU terms “all kernels are then fused”.

Access to the on-chip model at spectacular bandwidth and zero latency yields
spectacular throughput for the many models which are memory-bottlenecked on GPUs.

But what about training CNNs with batch norm using large batches?

21ScaledML 2018

Preview of work by Dominic Masters and Carlo Luschi, coming to arXiv soon.

Sweeping batch size m and “base learning rate” ῆ = η/m, where the weight
update equation is:

...so all runs do the same amount of computation, larger batches update the
gradients less often.

This example is training ResNet-32 on CIFAR100, with batch norm over the full
batch. Many other examples in the upcoming paper.

Small still batches learn better models, more reliably

22ScaledML 2018

Small batches learn better models, more reliably

For this example, batch size ~8 gives the best models, with the least sensitivity to chosen learning rate.

23ScaledML 2018

The warm-up strategy of Goyal et al (arXiv:1706.02677) helps larger batches but doesn’t level the field.
Best batch sizes 4-16, eg. distribute over 8 chips at m=2 per chip.

24ScaledML 2018

SGD with small batches yields better models.

Machines which are efficient for very small (sub-) batches allow parallel
learning over more machines.

We also need to embrace other types of memory-efficient algorithm:
• Trading re-computation for memory.
• Reversible models.

25ScaledML 2018

Trading re-computation for memory

DenseNet-201 training, batch=16.

Naive strategy: memorize
activations only at input of each
residue block, re-compute all
others in backward pass. ~1/5 memory

~1.25x compute

MiB
allocated

Time (#allocations normalised)

TensorFlow

less greedy

recomputedTF executing on CPU, recording
total memory allocated for weights
+ activations. Float16 weights and
activations, single weight copy.

26ScaledML 2018

Re-cap

• Throughput processors will be increasingly power limited, so will become mostly
memory.

• We can now integrate enough SRAM to hold large models entirely on chip.
• IPUs don’t need large batches for efficiency. Small batches deliver better models,

free most of the memory for params, and allow parallel learning over more machines.
• Efficient massively parallel processors need to compile communication patterns as

well as compute functions. So program graphs must be pseudo-static.
• BSP is a simple, concurrency-safe, and power-efficient paradigm for massively

parallel MI computing.

27ScaledML 2018

Thank You
simon@graphcore.ai

