

Deep Learning is great

Ted Dunning

© 2014 MapR Technologies

Deep Learning is great But don't forget cheap learning!

Ted Dunning

Me, Us

- Ted Dunning, MapR Chief Application Architect, Apache Member
 - Committer PMC member Zookeeper, Drill, others
 - Mentor for Flink, Beam (nee Dataflow), Drill, Storm, Zeppelin
 - VP Incubator
 - Bought the beer at the first HUG
- MapR
 - Produces first converged platform for big and fast data
 - Includes data platform (files, streams, tables) + open source
 - Adds major technology for performance, HA, industry standard API's
- Contact

@ted_dunning, ted.dunning@gmail.com, tdunning@mapr.com

Agenda

- Rationale
- Why cheap isn't the same as simple-minded
- Some techniques
- Examples

Outline

- We have a revolution on our hands
- This leads to a green-field situation
- That implies that many important problems are easy to solve
- The limiting factor is fielding good enough solutions
 - Quickly
 - With available workforce
- Examples

Is this really a revolutionary moment?

Big is the next big thing

- Data scale is exploding
- Companies are being funded
- Books are being written
- Applications sprouting up everywhere

Why Now?

- But Moore's law has applied for a long time
- Why is data exploding now?
- Why not 10 years ago?
- Why not 20?

Size Matters, but ...

 If it were just availability of data then existing big companies would adopt big data technology first

Size Matters, but ...

If it were just availability of data then existing big companies
would adopt big data technology first

They didn't

Or Maybe Cost

• If it were just a net positive value then finance companies should adopt first because they have higher opportunity value / byte

Or Maybe Cost

• If it were just a net positive value then finance companies should adopt first because they have higher opportunity value / byte

They didn't

Backwards adoption

Under almost any threshold argument startups would not adopt
 big data technology first

Backwards adoption

Under almost any threshold argument startups would not adopt
 big data technology first

They did

Everywhere at Once?

- Something very strange is happening
 - Big data is being applied at many different scales
 - At many value scales
 - By large companies and small

Everywhere at Once?

- Something very strange is happening
 - Big data is being applied at many different scales
 - At many value scales
 - By large companies and small

Why?

Analytics Scaling Laws

- Analytics scaling is all about the 80-20 rule
 - Big gains for little initial effort
 - Rapidly diminishing returns
- The key to net value is how costs scale.
 - Old school exponential scaling
 - Big data linear scaling, low constant
- Cost/performance has changed radically
 - IF you can use many commodity boxes

Most data isn't worth much in isolation

Suddenly worth processing

If we can handle the scale

So what makes that possible?

Scale

Pre-requisites for Tipping

- To reach the tipping point,
- Algorithms must scale out horizontally
 - On commodity hardware
 - That can and will fail
- Data practice must change
 - Denormalized is the new black
 - Flexible data dictionaries are the rule
 - Structured data becomes rare

With great scale comes great opportunity

• Increasing scale by 1000x changes the game

• We essentially have green fields opening up all around

• Most of the opportunities don't require advanced learning

OK.

We have a bona fide revolution

Greenfield Problem Landscape

Mature Problem Landscape

Why is cheap better than deep (sometimes)?

When we have a greenfield, problems can be

- Easy (large number of these)
- Impossible (large number of these)
- Hard but possible (right on the boundary)

In a mature field, problems can be

- Easy (these are already done)
- Impossible (still a large number of these)
- Hard but possible (now the majority of the effort)

Some examples

A simple example - security monitoring

- "Small" data
 - Capture IDS logs
 - Detect what you already know
- "Big" data
 - Capture switch, server, firewall logs as well
 - New patterns emerge immediately

Another example – fraud detection

- "Small" data
 - Maintain card profiles
 - Segment models
 - Evaluate all transactions
- "Big" Data
 - Maintain card profiles, full 90 day transaction history
 - Evaluate all transactions

Another example – indicator-based recommendation

- "Advanced" approach
 - Use matrix completion techniques (LDA, NNM, ALS)
 - Tune meta-parameters
 - Ensembles galore
- "Simple" approach
 - Count cooccurrences and cross-occurrences
 - Finding "interesting" pairs
 - Use standard search engine to recommend

Easy != Stupid

- You still have to do things reasonably well
 - Techniques that are not well founded are still problems
- Heuristic frequency ratios still fail
 - Coincidences still dominate the data
 - Accidental 100% correlations abound
- Related techniques still broken for coincidence
 - Pearson's χ^2
 - Simple correlations

Scale does not cure wrong

It just makes easy more common

A core technique

- Many of these easy problems reduce to finding interesting coincidences
- This can be summarized as a 2 x 2 table

• Actually, many of these tables

-<u>C</u>?J

How do you do that?

- This is well handled using G²-test
 - See wikipedia
 - See <u>http://bit.ly/surprise-and-coincidence</u>
- Original application in linguistics now cited > 2000 times
- Available in ElasticSearch, in Solr, in Mahout
- Available in R, C, Java, Python

Which one is the anomalous co-occurrence?

	Α	not A
В	13	1000
not B	1000	100,000

	Α	not A
В	1	0
not B	0	10,000

	A	not A
В	1	0
not B	0	2

	A	not A
В	10	0
not B	0	100,000

Which one is the anomalous co-occurrence?

Dunning Ted, Accurate Methods for the Statistics of Surprise and Coincidence, *Computational Linguistics* vol 19 no. 1 (1993)

So we can find interesting coincidences.

That gets us exactly what?

Operation Ababil – Brobots on Parade

- Dork attack to find unpatched default Joomla sites
 - Especially web servers with high bandwidth connections
 - Basically just Google searches for default strings
 - Joomla compromised into attack Brobot
- C&C network checks in occasionally
 - Note C&C is incoming request and looks like normal web requests
- Later, on command, multiple Brobots direct 50-75 Gb/s of attack
 - Attacks come from white-listed sites

Outline of an Advanced Persistent Threat

- Advanced
 - Common use of zero-day for preliminary attacks
 - Often attributed to state-level actors
 - Modern privateers blur the line
- Persistent
 - Result of first attack is heavily muffled, no immediate exploit
 - Remote access toolset installed (RAT)
- Threat
 - On command, data is exfiltrated covertly or *en masse*
 - Or the compromised host is used for other nefarious purpose

APT in Summary

- Attack, penetrate, pivot, exfiltrate or exploit
- If you are a high-value target, attack is likely and stealthy
 - High-value = telecom, banks, utilities, retail targets, web100
 - ... and all their vendors
 - Conventional multi-factor auth is easily breached
- Penetration and pivot are critical counter-measure opportunities
 - In 2010, RAT would contact command and control (C&C)
 - In 2016, C&C looks like normal traffic
- Once exfiltration or exploit starts, you may no longer have a business

Example 1 - Ababil

Spot the Important Difference?

```
GET /personal/comparison-table
Host: www.sometarget.com
User-Agent: Mozilla/4.0 (compa
Accept-Encoding: deflate
Accept-Charset: UTF-8
Accept-Language: fr
Cache-Control: no-cache
Pragma: no-cache
Connection: Keep-Alive
```

Attacker request

GET /photo.jpg HTTP/1.1 Host: lh4.googleusercontent. User-Agent: Mozilla/5.0 (Mad Accept: image/png,image/*;q= Accept-Language: en-US, en; q= Accept-Encoding: gzip, defla Referer: https://www.google. Connection: keep-alive If-None-Match: "v9" Cache-Control: max-age=0

Real request

Spot the Important Difference?

```
GET /personal/comparison-table
Host: www.sometarget.com
User-Agent: Mozilla/4.0 (compa
Accept-Encoding deflate
Accept-Charset: UTF-8
Accept-Language: <
Cache-Control: no-cache
Pragma: no-cache
Connection: Keep-Alive
```

GET /photo.jpg HTTP/1.1 Host: lh4.googleusercontent. User-Agent: Mozilla/5.0 (Mad Accept: image/png,image/*;q= ☆ccept-Language: en-US,en;q= 🂫 cept-Encoding: gzip, defla Referer: https://www.google. Connection: keep-alive If-None-Match: "v9" Cache-Control: max-age=0

Attacker request

Real request

This could only be found at scale

This could only be found at scale

But at scale, it is stupidly simple to find

Overall Outline Again

Large corpus analysis of source IP's wins big

WANTED FBI

Example 2 - Common Point of Compromise

- Scenario:
 - Merchant 0 is compromised, leaks account data during compromise
 - Fraud committed elsewhere during exploit
 - High background level of fraud
 - Limited detection rate for exploits
- Goal:
 - Find merchant 0
- Meta-goal:
 - Screen algorithms for this task without leaking sensitive data

Example 2 - Common Point of Compromise

Simulation Setup

day

Detection Strategy

- Select histories that precede non-fraud
- And histories that precede fraud detection
- Analyze 2x2 cooccurrence of merchant *n* versus fraud detection

LLR score for simulated merchants

Number of Merchants

What about the real world?

LLR score for real data

Number of Merchants

Historical cooccurrence gives high S/N

Historical cooccurrence gives high S/N

(we win)
Cooccurrence Analysis

Real-life example

- Query: "Paco de Lucia"
- Conventional meta-data search results:
 - "hombres de paco" times 400
 - not much else
- Recommendation based search:
 - Flamenco guitar and dancers
 - Spanish and classical guitar
 - Van Halen doing a classical/flamenco riff

Real-life example

CONCIERTO CIUDAD DE LAS IDEAS PARTE FINAL Music 58 views

Siudy / Buleria Music 722 views

Vicente Amigo 2ª parte Ciudad de las Ideas Music 124 views

Van Halen's Eruption

Freestyle Flamenco Music 653 views

Music

So ...

- There are suddenly lots of these problems
- Simple techniques have surprising power at scale
 - Cooccurrence via G² / LLR
 - Distributional anomaly detection via *t*-digest
- These simple techniques are largely unsuitable for academic research
- But they are highly applicable in resource constrained industrial settings

Summary

- That scale has lowered the tree
 - Hard problems are much easier
 - Lots of low-hanging fruit all around us
- Cheap learning has huge value
- Code available at

http://github.com/tdunning

© 2016 MapR Technologies

MAPR

77

Me, Us

- Ted Dunning, MapR Chief Application Architect, Apache Member
 - Committer PMC member Zookeeper, Drill, others
 - Mentor for Flink, Beam (nee Dataflow), Drill, Storm, Zeppelin
 - VP Incubator
 - Bought the beer at the first HUG
- MapR
 - Produces a converged platform for big and fast data
 - Includes data platform (files, streams, tables) + open source
 - Adds major technology for performance, HA, industry standard API's
- Contact

@ted_dunning, ted.dunning@gmail.com, tdunning@mapr.com

Q & A