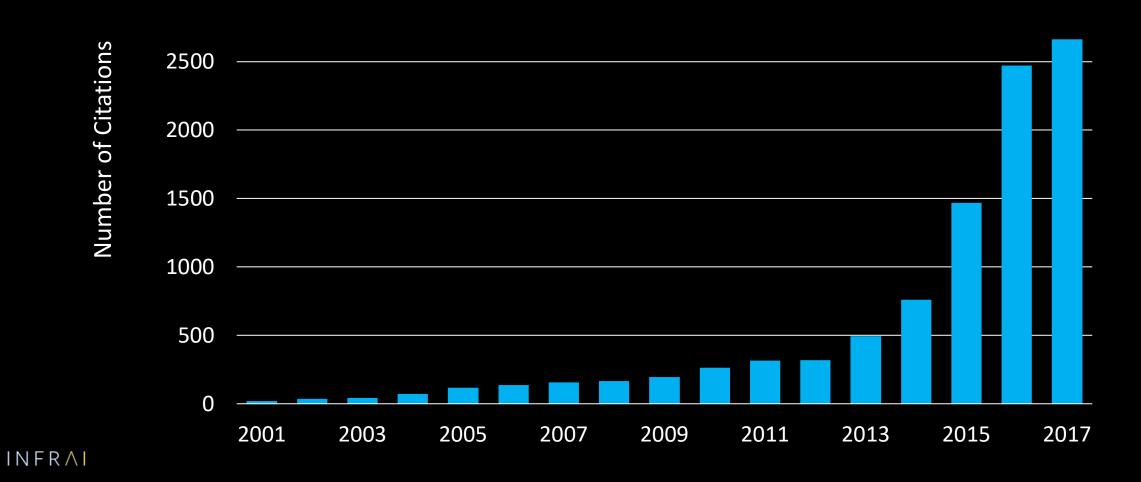
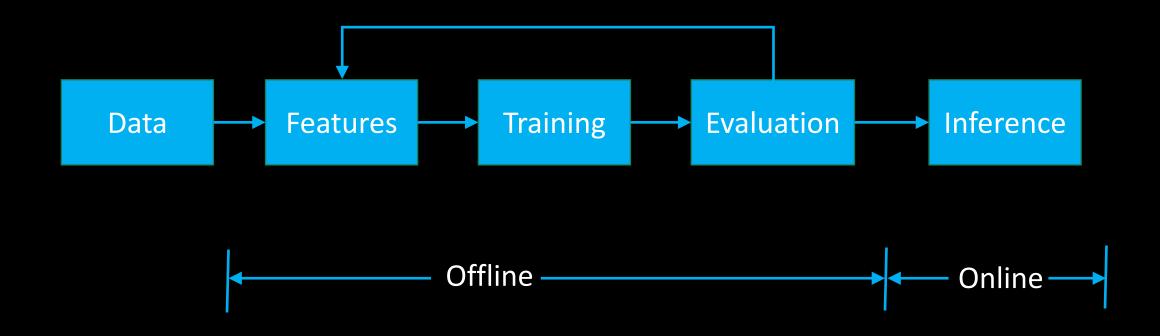


(* This is not Facebook AI Infra)

The Machine Learning Moore's Law?

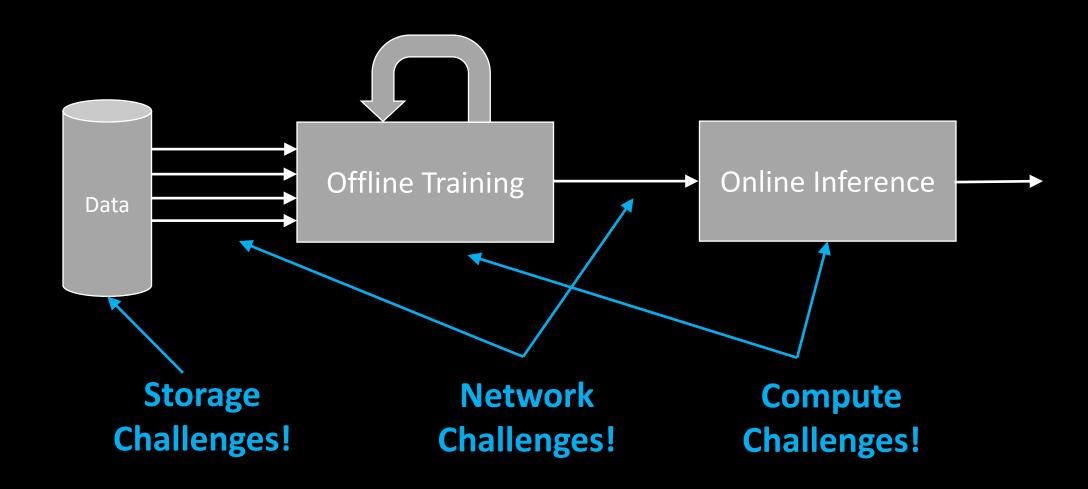


Machine Learning Execution Flow



Machine Learning Execution Flow Q Search Share Have an HPCA-relevant workshop to run? Want to go to Vienna in February? Submit a proposal by Training Data Eval Inference Features **Predictions** Model HPCA 2018 HPCA 2018 - CALL FOR WORKSHOP AND TUTORIAL PROPOSALS ACM SIGARCH sigarch.org Commen Commen

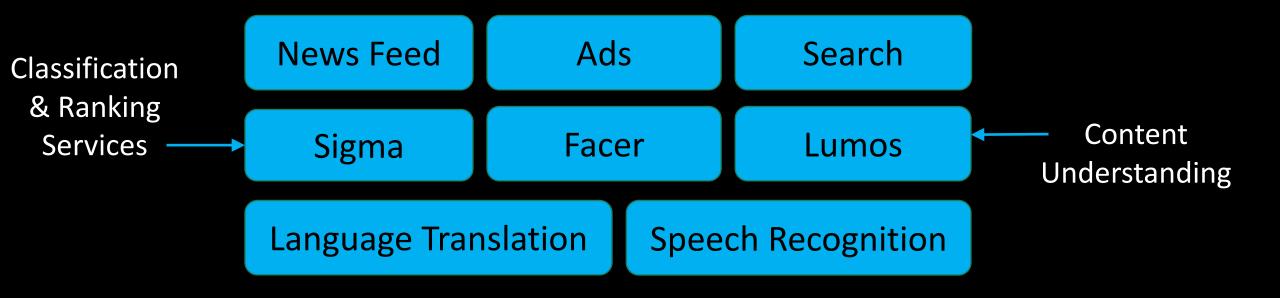
It's an infrastructure challenge



Let's Answer Some Pressing Questions

- Does Facebook leverage machine learning?
- Does Facebook design hardware?
- Does Facebook design hardware for machine learning?
- What platforms and frameworks exist; can the community use them?
- What assumptions break when supporting 2B people?

Does Facebook Use Machine Learning?



What ML Models Do We Leverage?

Support Vector Machines Gradient-Boosted Decision Trees

Multi-Layer Perceptron Convolutional Neural Nets

Recurrent Neural Nets

SVM

GBDT

MLP

CNN

RNN

Facer

Sigma

News Feed

Ads

Facer

Lumos

Language Translation

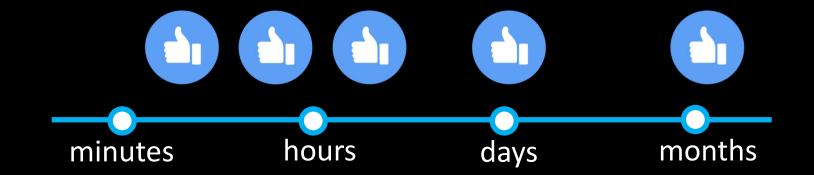
Speech Rec

Content Understanding

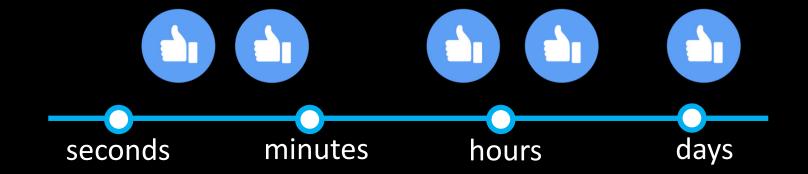
Search

Sigma

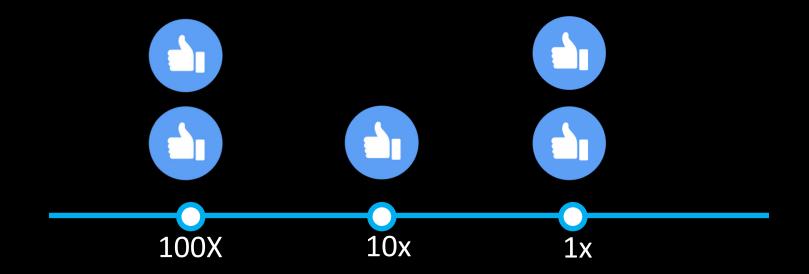
How Often Do We Train Models?



How Long Does Training Take?

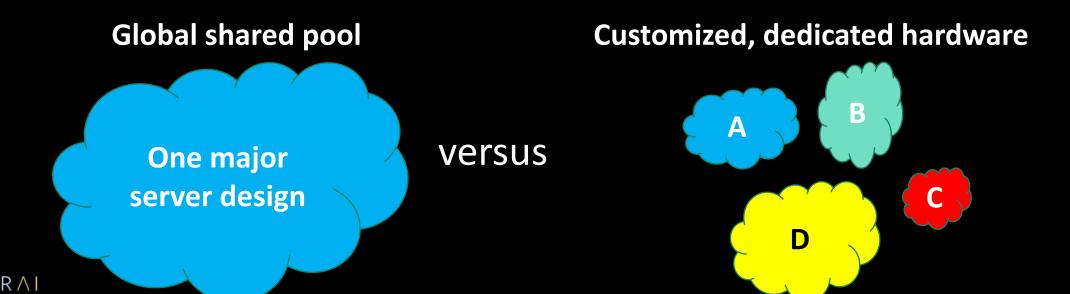


How Much Compute Does Inference Consume?

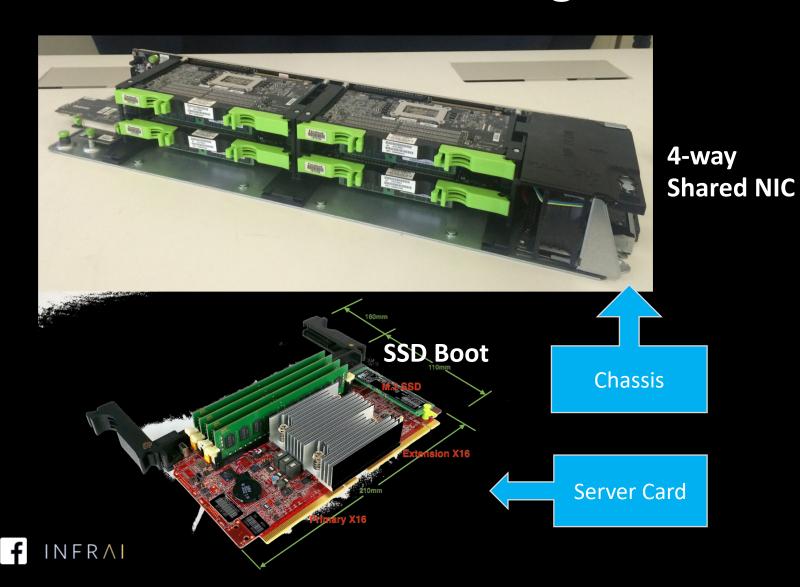


Does Facebook Design Hardware?

- Yes! Since 2010! All designs released through open compute!
- Facebook Server Design Philosophy
 - Identify a small number of major services with unique resource requirements
 - Design servers for those major services



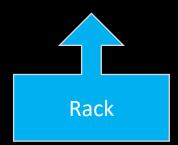
Does Facebook Design Hardware?



Yosemite/Twin Lakes:

For the web tier and other "stateless services"

Open Compute "Sleds" are 2U x 3 Across in an Open Compute Rack



Does Facebook Design Hardware?

Tioga Pass: For compute or memoryintensive workloads:

Bryce Canyon:For storage-heavy workloads:

Does Facebook Design Hardware for AI/ML?

- HP SL270s (2013): learning serviceability, thermal, perf, reliability, cluster mgmt.
- Big Sur (M40) -> Big Basin (P100) -> Big Basin Volta (V100)

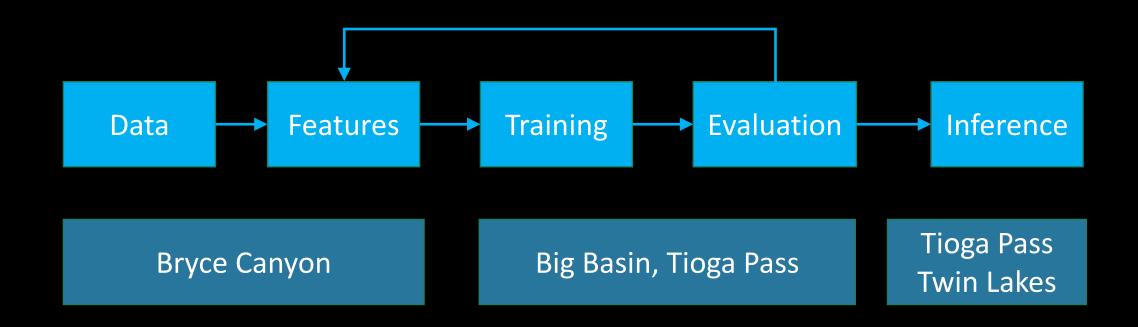
Big Sur

Integrated Compute 8 Nvidia M40 GPUs

Big Basin

JBOG Design (CPU headnode) 8 Nvidia P100 / V100 GPUs

Putting it Together





Let's Answer Some Pressing Questions

- Does Facebook leverage machine learning?
- Does Facebook design hardware?
- Does Facebook design hardware for machine learning?
- What platforms and frameworks exist; can the community use them?
- What assumptions break when supporting 2B people?

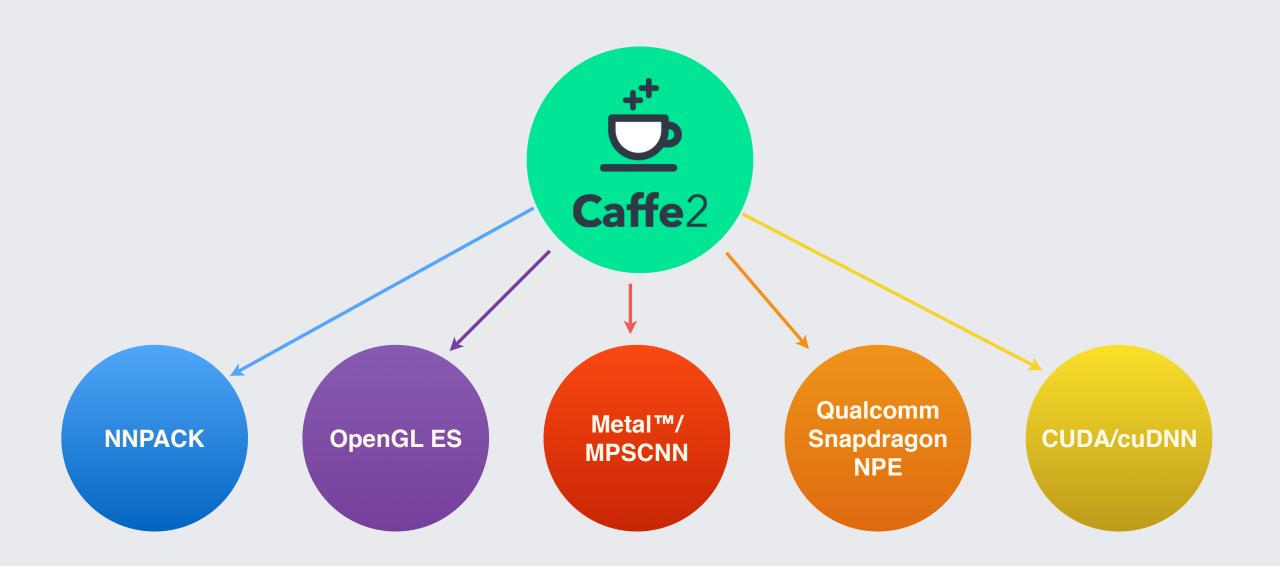
Facebook AI Frameworks

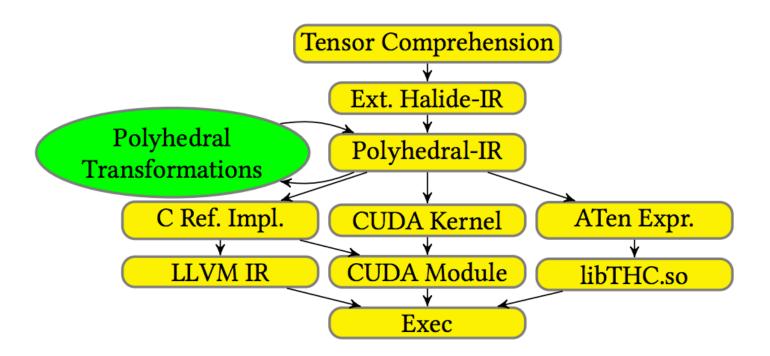
Infra Efficiency for Production

- Stability
- Scale & Speed
- Data Integration
- Relatively Fixed

Developer Efficiency for Research

- Flexible
- Fast Iteration
- Highly Debuggable
- Less Robust






```
# -*- coding: utf-8 -*-
import numpy as np
# N is batch size; D_in is input dimension;
# H is hidden dimension; D out is output dimension.
N, D in, H, D out = 64, 1000, 100, 10
# Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D out)
# Randomly initialize weights
                                             Numpy
w1 = np.random.randn(D in, H)
w2 = np.random.randn(H, D_out)
learning rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
   h = x.dot(w1)
   h_relu = np.maximum(h, 0)
   y pred = h relu.dot(w2)
   # Compute and print loss
   loss = np.square(y pred - y).sum()
   print(t, loss)
   # Backprop to compute gradients of w1 and w2 with respect to loss
   grad y pred = 2.0 * (y pred - y)
   grad_w2 = h_relu.T.dot(grad_y_pred)
   grad_h_relu = grad_y_pred.dot(w2.T)
   grad h = grad h relu.copy()
   grad h[h < 0] = 0
   grad w1 = x.T.dot(grad h)
   # Update weights
   w1 -= learning rate * grad w1
   w2 -= learning rate * grad w2
```

```
import torch
dtype = torch.FloatTensor
# dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU
# N is batch size; D_in is input dimension;
# H is hidden dimension; D out is output dimension.
N, D in, H, D out = 64, 1000, 100, 10
# Create random input and output data
x = torch.randn(N, D_in).type(dtype)
y = torch.randn(N, D_out).type(dtype)
                                              PyTorch
# Randomly initialize weights
w1 = torch.randn(D_in, H).type(dtype)
w2 = torch.randn(H, D_out).type(dtype)
learning rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
   h = x.mm(w1)
   h relu = h.clamp(min=0)
   y_pred = h_relu.mm(w2)
    # Compute and print loss
    loss = (y pred - y).pow(2).sum()
    print(t, loss)
    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
   grad_h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    # Update weights using gradient descent
    w1 -= learning rate * grad w1
    w2 -= learning_rate * grad_w2
```


Following

 \vee

I've been using PyTorch a few months now and I've never felt better. I have more energy. My skin is clearer. My eye sight has improved.

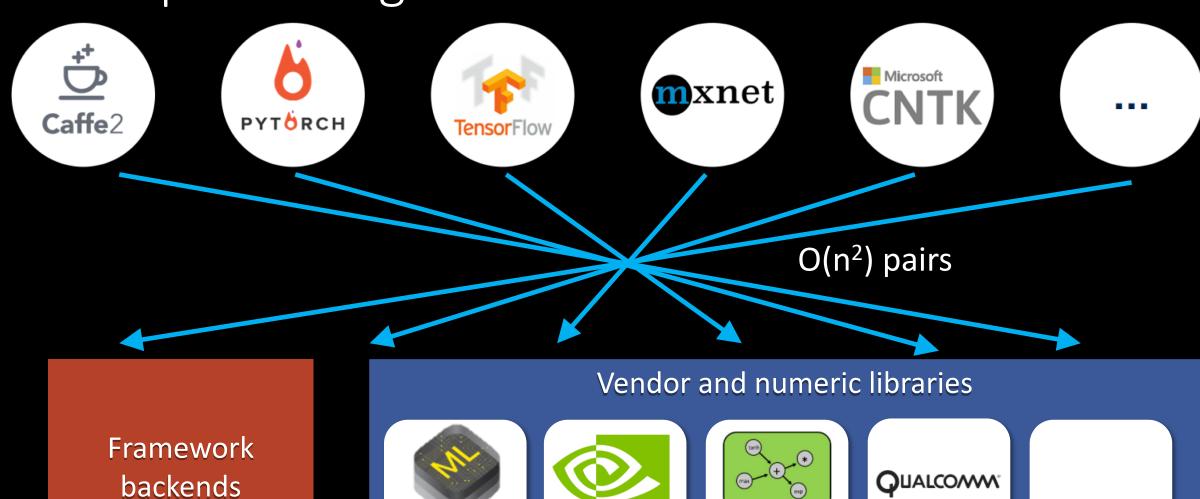
Sean Robertson @sprobertson · 26 May 2017

Replying to @karpathy

Talk to your doctor to find out if PyTorch is right for you.

Deep Learning Frameworks

Apple CoreML



Nvidia TensorRT

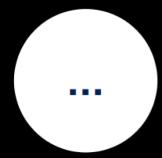
Intel/Nervana

ngraph

Qualcom SNPE . . .

f

Open Neural Network Exchange

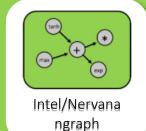


Shared model and operator representation

From O(n²) to O(n) pairs

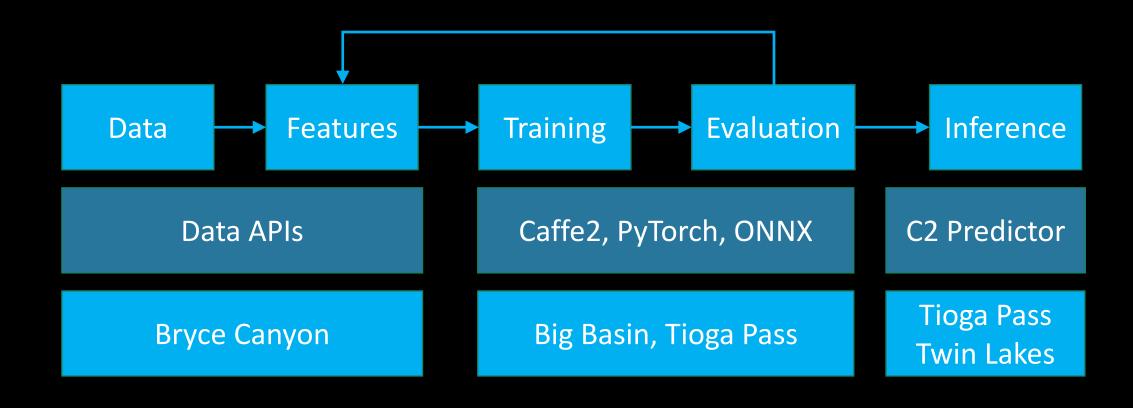
Framework backends

Vendor and numeric libraries



•••

Putting it Together



Facebook AI Ecosystem

Frameworks: Core ML Software Caffe2 / PyTorch / ONNX

Platforms: Workflow Management, Deployment FB Learner

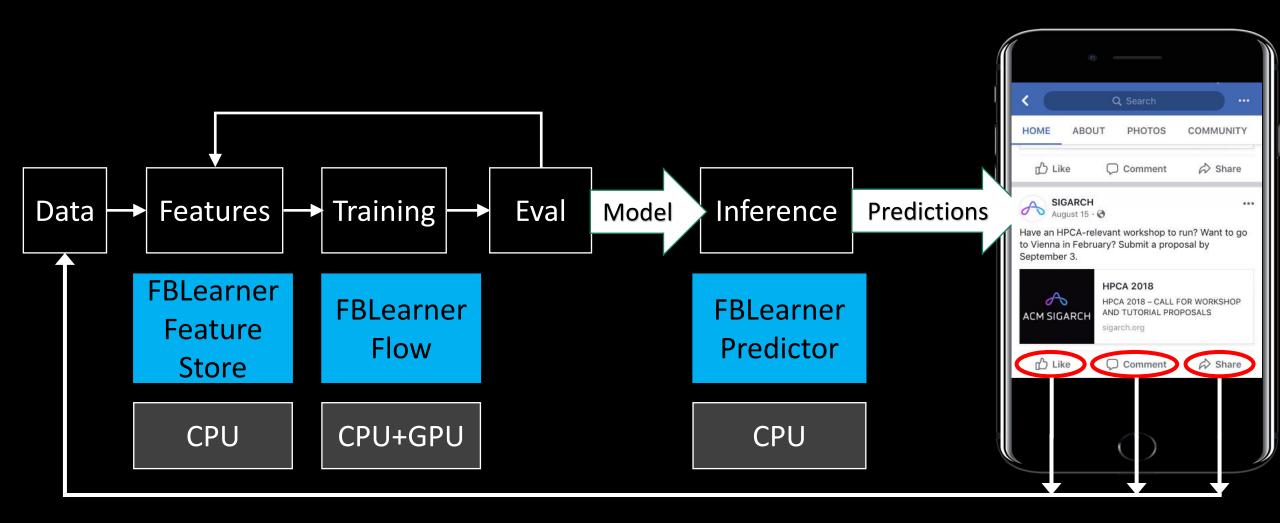
Infrastructure: Servers, Storage, Network Strategy
Open Compute Project

FB Learner Platform

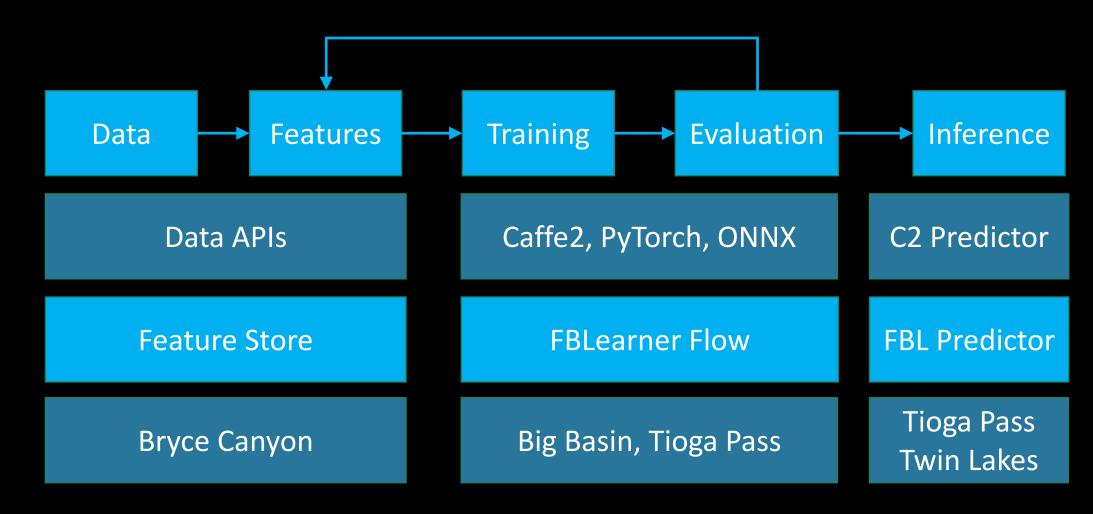
- Al Workflow
- Model Management and Deployment

FB Learner Feature Store FB Learner Flow FB Learner Predictor

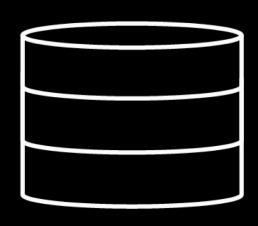
FBLearner in ML

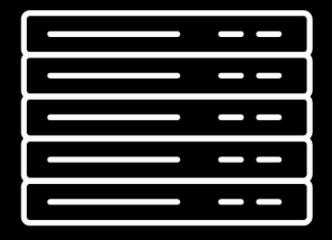


Putting it All Together



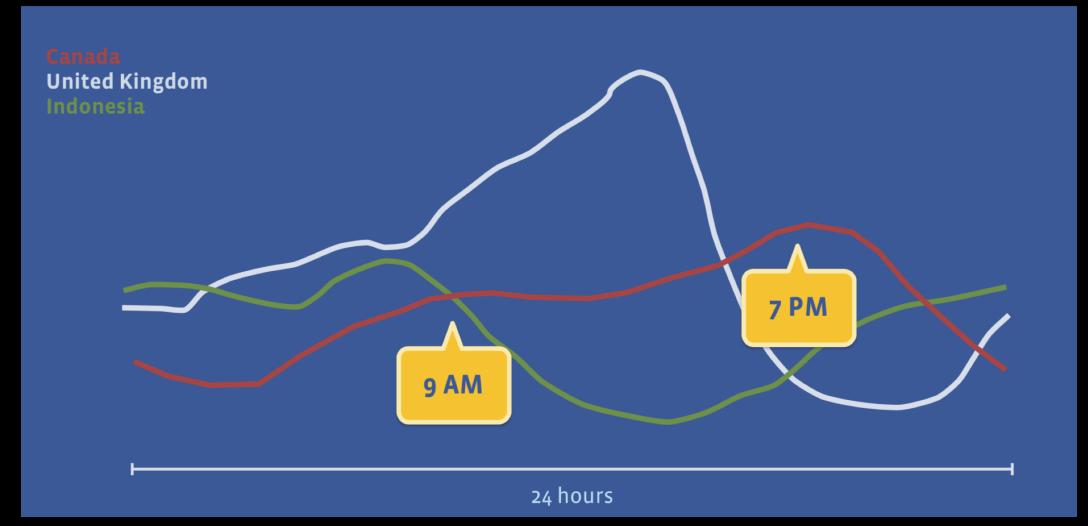
Scaling Challenges / Opportunities





Lots of Compute

Scaling Opportunity: Free Compute!



Key Takeaways

Facebook Al

Lots of Wide variety Full stack challenges

Globa

Global scale

Kim Hazelwood

Sarah Bird

David Brooks

Soumith Chintala

Utku Diril

Dmytro Dzhulgakov

Mohamed Fawzy

Bill Jia

Yangqing Jia

Aditya Kalro

James Law

Kevin Lee

Jason Lu

Pieter Noordhuis

Misha Smelyanskiy

Liang Xiong

Xiaodong Wang

